Cargando…

Phenotypic Stability of Sex and Expression of Sex Identification Markers in the Adult Yesso Scallop Mizuhopecten yessoensis throughout the Reproductive Cycle

SIMPLE SUMMARY: Bivalve sex is thought to fluctuate depending on environmental conditions. So far, there has been no investigation on the phenotypic stability of sex in the commercially important Yesso scallop Mizuhopecten yessoensis. The present study revealed that the sex of the Yesso scallop is s...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagasawa, Kazue, Thitiphuree, Tongchai, Osada, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562885/
https://www.ncbi.nlm.nih.gov/pubmed/31137722
http://dx.doi.org/10.3390/ani9050277
Descripción
Sumario:SIMPLE SUMMARY: Bivalve sex is thought to fluctuate depending on environmental conditions. So far, there has been no investigation on the phenotypic stability of sex in the commercially important Yesso scallop Mizuhopecten yessoensis. The present study revealed that the sex of the Yesso scallop is stable after initial sex differentiation and that this species maintains a sex-stable maturation system throughout its life. In addition, gonad differentiation for each sex was precisely characterized by using molecular markers throughout the maturational cycle. ABSTRACT: The objective of the present study was to analyze the phenotypic stability of sex after sex differentiation in the Yesso scallop, which is a gonochoristic species that has been described as protandrous. So far, no study has investigated in detail the sexual fate of the scallop after completion of sex differentiation, although bivalve species often show annual sex change. In the present study, we performed a tracking experiment to analyze the phenotypic stability of sex in scallops between one and two years of age. We also conducted molecular marker analyses to describe sex differentiation and gonad development. The results of the tracking experiment revealed that all scallops maintained their initial sex phenotype, as identified in the last reproductive period. Using molecular analyses, we characterized my-dmrt2 and my-foxl2 as sex identification markers for the testis and ovary, respectively. We conclude by proposing that the Yesso scallop is a sex-stable bivalve after its initial sex differentiation and that it maintains a sex-stable maturation system throughout its life. The sex-specific molecular markers identified in this study are useful tools to assess the reproductive status of the Yesso scallop.