Cargando…

Multi-Path Dilated Residual Network for Nuclei Segmentation and Detection

As a typical biomedical detection task, nuclei detection has been widely used in human health management, disease diagnosis and other fields. However, the task of cell detection in microscopic images is still challenging because the nuclei are commonly small and dense with many overlapping nuclei in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Eric Ke, Zhang, Xun, Pan, Leyun, Cheng, Caixia, Dimitrakopoulou-Strauss, Antonia, Li, Yueping, Zhe, Nie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562946/
https://www.ncbi.nlm.nih.gov/pubmed/31126166
http://dx.doi.org/10.3390/cells8050499
Descripción
Sumario:As a typical biomedical detection task, nuclei detection has been widely used in human health management, disease diagnosis and other fields. However, the task of cell detection in microscopic images is still challenging because the nuclei are commonly small and dense with many overlapping nuclei in the images. In order to detect nuclei, the most important key step is to segment the cell targets accurately. Based on Mask RCNN model, we designed a multi-path dilated residual network, and realized a network structure to segment and detect dense small objects, and effectively solved the problem of information loss of small objects in deep neural network. The experimental results on two typical nuclear segmentation data sets show that our model has better recognition and segmentation capability for dense small targets.