Cargando…

Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon

Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine‐learning‐based techniques can give new, quantitative chemical insight into the atomic‐scale stru...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernstein, Noam, Bhattarai, Bishal, Csányi, Gábor, Drabold, David A., Elliott, Stephen R., Deringer, Volker L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563111/
https://www.ncbi.nlm.nih.gov/pubmed/30835962
http://dx.doi.org/10.1002/anie.201902625
Descripción
Sumario:Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine‐learning‐based techniques can give new, quantitative chemical insight into the atomic‐scale structure of amorphous silicon (a‐Si). We combine a quantitative description of the nearest‐ and next‐nearest‐neighbor structure with a quantitative description of local stability. The analysis is applied to an ensemble of a‐Si networks in which we tailor the degree of ordering by varying the quench rates down to 10(10) K s(−1). Our approach associates coordination defects in a‐Si with distinct stability regions and it has also been applied to liquid Si, where it traces a clear‐cut transition in local energies during vitrification. The method is straightforward and inexpensive to apply, and therefore expected to have more general significance for developing a quantitative understanding of liquid and amorphous states of matter.