Cargando…
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine‐learning‐based techniques can give new, quantitative chemical insight into the atomic‐scale stru...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563111/ https://www.ncbi.nlm.nih.gov/pubmed/30835962 http://dx.doi.org/10.1002/anie.201902625 |
_version_ | 1783426476592332800 |
---|---|
author | Bernstein, Noam Bhattarai, Bishal Csányi, Gábor Drabold, David A. Elliott, Stephen R. Deringer, Volker L. |
author_facet | Bernstein, Noam Bhattarai, Bishal Csányi, Gábor Drabold, David A. Elliott, Stephen R. Deringer, Volker L. |
author_sort | Bernstein, Noam |
collection | PubMed |
description | Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine‐learning‐based techniques can give new, quantitative chemical insight into the atomic‐scale structure of amorphous silicon (a‐Si). We combine a quantitative description of the nearest‐ and next‐nearest‐neighbor structure with a quantitative description of local stability. The analysis is applied to an ensemble of a‐Si networks in which we tailor the degree of ordering by varying the quench rates down to 10(10) K s(−1). Our approach associates coordination defects in a‐Si with distinct stability regions and it has also been applied to liquid Si, where it traces a clear‐cut transition in local energies during vitrification. The method is straightforward and inexpensive to apply, and therefore expected to have more general significance for developing a quantitative understanding of liquid and amorphous states of matter. |
format | Online Article Text |
id | pubmed-6563111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65631112019-06-17 Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon Bernstein, Noam Bhattarai, Bishal Csányi, Gábor Drabold, David A. Elliott, Stephen R. Deringer, Volker L. Angew Chem Int Ed Engl Communications Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine‐learning‐based techniques can give new, quantitative chemical insight into the atomic‐scale structure of amorphous silicon (a‐Si). We combine a quantitative description of the nearest‐ and next‐nearest‐neighbor structure with a quantitative description of local stability. The analysis is applied to an ensemble of a‐Si networks in which we tailor the degree of ordering by varying the quench rates down to 10(10) K s(−1). Our approach associates coordination defects in a‐Si with distinct stability regions and it has also been applied to liquid Si, where it traces a clear‐cut transition in local energies during vitrification. The method is straightforward and inexpensive to apply, and therefore expected to have more general significance for developing a quantitative understanding of liquid and amorphous states of matter. John Wiley and Sons Inc. 2019-04-17 2019-05-20 /pmc/articles/PMC6563111/ /pubmed/30835962 http://dx.doi.org/10.1002/anie.201902625 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Bernstein, Noam Bhattarai, Bishal Csányi, Gábor Drabold, David A. Elliott, Stephen R. Deringer, Volker L. Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon |
title | Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon |
title_full | Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon |
title_fullStr | Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon |
title_full_unstemmed | Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon |
title_short | Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon |
title_sort | quantifying chemical structure and machine‐learned atomic energies in amorphous and liquid silicon |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563111/ https://www.ncbi.nlm.nih.gov/pubmed/30835962 http://dx.doi.org/10.1002/anie.201902625 |
work_keys_str_mv | AT bernsteinnoam quantifyingchemicalstructureandmachinelearnedatomicenergiesinamorphousandliquidsilicon AT bhattaraibishal quantifyingchemicalstructureandmachinelearnedatomicenergiesinamorphousandliquidsilicon AT csanyigabor quantifyingchemicalstructureandmachinelearnedatomicenergiesinamorphousandliquidsilicon AT drabolddavida quantifyingchemicalstructureandmachinelearnedatomicenergiesinamorphousandliquidsilicon AT elliottstephenr quantifyingchemicalstructureandmachinelearnedatomicenergiesinamorphousandliquidsilicon AT deringervolkerl quantifyingchemicalstructureandmachinelearnedatomicenergiesinamorphousandliquidsilicon |