Cargando…
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine‐learning‐based techniques can give new, quantitative chemical insight into the atomic‐scale stru...
Autores principales: | Bernstein, Noam, Bhattarai, Bishal, Csányi, Gábor, Drabold, David A., Elliott, Stephen R., Deringer, Volker L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563111/ https://www.ncbi.nlm.nih.gov/pubmed/30835962 http://dx.doi.org/10.1002/anie.201902625 |
Ejemplares similares
-
Exploring the configurational space of amorphous graphene with machine-learned atomic energies
por: El-Machachi, Zakariya, et al.
Publicado: (2022) -
Extracting Crystal Chemistry from Amorphous Carbon Structures
por: Deringer, Volker L., et al.
Publicado: (2017) -
Reactivity of Amorphous Carbon Surfaces: Rationalizing
the Role of Structural Motifs in Functionalization Using Machine Learning
por: Caro, Miguel A., et al.
Publicado: (2018) -
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
por: Deringer, Volker L., et al.
Publicado: (2020) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021)