Cargando…

Prevalence of Periodontal Disease and Periodontopathic Bacteria in Anti–Cyclic Citrullinated Protein Antibody–Positive At-Risk Adults Without Arthritis

IMPORTANCE: The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA) and periodontopathic bacteria can citrullinate proteins. Periodontitis may, therefore, be an initiator of RA and a target for prevention. Periodontal disease and periodontal bacteria have not been inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Mankia, Kulveer, Cheng, Zijian, Do, Thuy, Hunt, Laura, Meade, Josephine, Kang, Jing, Clerehugh, Val, Speirs, Alastair, Tugnait, Aradhna, Hensor, Elizabeth M. A., Nam, Jackie L., Devine, Deirdre A., Emery, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Association 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563551/
https://www.ncbi.nlm.nih.gov/pubmed/31173126
http://dx.doi.org/10.1001/jamanetworkopen.2019.5394
Descripción
Sumario:IMPORTANCE: The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA) and periodontopathic bacteria can citrullinate proteins. Periodontitis may, therefore, be an initiator of RA and a target for prevention. Periodontal disease and periodontal bacteria have not been investigated in at-risk individuals with RA autoimmunity but no arthritis. OBJECTIVE: To examine periodontal disease and periodontopathic bacteria in anti–cyclic citrullinated protein (anti-CCP) antibody–positive at-risk individuals without arthritis. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study took place at a teaching hospital from April 27, 2015, to May 8, 2017. Forty-eight anti-CCP–positive individuals without arthritis (CCP+ at-risk) were recruited nationally. Twenty-six patients with early RA (ERA) and 32 healthy control individuals were recruited locally. Data were analyzed between June 1, 2017, and December 1, 2017. INTERVENTIONS: Periodontal assessment and examination of joints using ultrasonography. MAIN OUTCOMES AND MEASURES: Prevalence of diseased periodontal sites, clinical periodontitis, and periodontal inflamed surface area in CCP+ at-risk individuals compared with patients with ERA and healthy individuals matched for age and smoking. Paired-end sequencing of DNA from subgingival plaque from diseased and healthy periodontal sites was performed and DNA was profiled and analyzed. RESULTS: A total of 48 CCP+ at-risk individuals (mean [SD] age, 51.9 [11.4] years; 31 [65%] female), 26 patients with ERA (mean [SD] age, 54.4 [16.7] years; 14 [54%] female), and 32 healthy individuals (mean [SD] age, 49.4 [15.3] years; 19 [59%] female) were recruited. Of 48 CCP+ at-risk individuals, 46 had no joint inflammation on ultrasonography. Thirty-five CCP+ at-risk individuals (73%), 12 healthy individuals (38%), and 14 patients with ERA (54%) had clinical periodontitis. The median (interquartile range) percentage of periodontal sites with disease was greater in CCP+ at-risk individuals compared with healthy individuals (3.3% [0%-11.3%] vs 0% [0%-0.7%]) and similar to patients with ERA (1.1% [0%-13.1%]). Median (interquartile range) periodontal inflamed surface area was higher in CCP+ at-risk individuals compared with healthy individuals (221 mm(2) [81-504 mm(2)] vs 40 mm(2) [12-205 mm(2)]). Patients with CCP+ at-risk had increased relative abundance of Porphyromonas gingivalis (but not Aggregatibacter actinomycetemcomitans) at healthy periodontal sites compared with healthy individuals (effect size, 3.00; 95% CI, 1.71-4.29) and patients with ERA (effect size, 2.14; 95% CI, 0.77-3.52). CONCLUSIONS AND RELEVANCE: This study found increased prevalence of periodontitis and P gingivalis in CCP+ at-risk individuals. This suggests periodontitis and P gingivalis are associated with disease initiation and could be targets for preventive interventions in RA.