Cargando…
Deep Learning–Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model
IMPORTANCE: Deep learning has the potential to augment clinician performance in medical imaging interpretation and reduce time to diagnosis through automated segmentation. Few studies to date have explored this topic. OBJECTIVE: To develop and apply a neural network segmentation model (the HeadXNet...
Autores principales: | Park, Allison, Chute, Chris, Rajpurkar, Pranav, Lou, Joe, Ball, Robyn L., Shpanskaya, Katie, Jabarkheel, Rashad, Kim, Lily H., McKenna, Emily, Tseng, Joe, Ni, Jason, Wishah, Fidaa, Wittber, Fred, Hong, David S., Wilson, Thomas J., Halabi, Safwan, Basu, Sanjay, Patel, Bhavik N., Lungren, Matthew P., Ng, Andrew Y., Yeom, Kristen W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563570/ https://www.ncbi.nlm.nih.gov/pubmed/31173130 http://dx.doi.org/10.1001/jamanetworkopen.2019.5600 |
Ejemplares similares
-
AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Huang, Shih-Cheng, et al.
Publicado: (2020) -
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Huang, Shih-Cheng, et al.
Publicado: (2020) -
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
por: Rajpurkar, Pranav, et al.
Publicado: (2018) -
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
por: Bien, Nicholas, et al.
Publicado: (2018)