Cargando…

Structure-based analysis of curcumin and conventionaldrugs targeting tumor-inducing protein PHF20

Recently, the PHF20 has been reported as tumor inducer protein by suppressing the activity of tumor suppressor protein p53. Conventional drugs (albendazole, doxazosin, and propranolol) are used for treatment of cancer causing side effect. The secondary metabolite curcumin is employed in various dise...

Descripción completa

Detalles Bibliográficos
Autores principales: Agrawal, Vibha, Mishra, Aradhya, Tiwari, Shivani, Akhileshwar, Kumar Srivastava
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563658/
https://www.ncbi.nlm.nih.gov/pubmed/31223206
http://dx.doi.org/10.6026/97320630014477
Descripción
Sumario:Recently, the PHF20 has been reported as tumor inducer protein by suppressing the activity of tumor suppressor protein p53. Conventional drugs (albendazole, doxazosin, and propranolol) are used for treatment of cancer causing side effect. The secondary metabolite curcumin is employed in various diseases treatment including cancer. The present study is to explore curcumin in comparison to selected conventional drugs by using molecular docking. The online database “Molinspiration online server” detected the physicochemical pharmacokinetics and drug likeness score of curcumin and conventional drugs. Results from Molinspiration online server showed that curcumin did not violate the “Lipinski five rule” for drug. The lead compound for molecular docking exhibited the potential interaction to the active site of PHF20. The resulted binding energy of albendazole and doxazosin were -21.97 and -26.64 respectively. The binding energy (-18.12 kcal/mol) of curcumin was higher than propranolol (17.62 kcal/mol). Thus, curumin has greater potential to interact for further consideration as an anti-cancerous regimen