Cargando…
First Error-Based Supervised Learning Algorithm for Spiking Neural Networks
Neural circuits respond to multiple sensory stimuli by firing precisely timed spikes. Inspired by this phenomenon, the spike timing-based spiking neural networks (SNNs) are proposed to process and memorize the spatiotemporal spike patterns. However, the response speed and accuracy of the existing le...
Autores principales: | Luo, Xiaoling, Qu, Hong, Zhang, Yun, Chen, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563788/ https://www.ncbi.nlm.nih.gov/pubmed/31244594 http://dx.doi.org/10.3389/fnins.2019.00559 |
Ejemplares similares
-
Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks
por: Gardner, Brian, et al.
Publicado: (2021) -
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
por: Xie, Xiurui, et al.
Publicado: (2016) -
Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges
por: Dutta, Sourav, et al.
Publicado: (2020) -
Supervised Learning Algorithm Based on Spike Train Inner Product for Deep Spiking Neural Networks
por: Lin, Xianghong, et al.
Publicado: (2023) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Liu, Fangxin, et al.
Publicado: (2021)