Cargando…
Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains
The high concentration of arsenic (As) in rice grains, in a large proportion of the rice growing areas, is a critical issue. This study explores the feasibility of conventional (QTL-based) marker-assisted selection and genomic selection to improve the ability of rice to prevent As uptake and accumul...
Autores principales: | Frouin, Julien, Labeyrie, Axel, Boisnard, Arnaud, Sacchi, Gian Attilio, Ahmadi, Nourollah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563978/ https://www.ncbi.nlm.nih.gov/pubmed/31194746 http://dx.doi.org/10.1371/journal.pone.0217516 |
Ejemplares similares
-
Genomic selection for salinity tolerance in japonica rice
por: Bartholomé, Jérôme, et al.
Publicado: (2023) -
Tolerance to mild salinity stress in japonica rice: A genome-wide association mapping study highlights calcium signaling and metabolism genes
por: Frouin, Julien, et al.
Publicado: (2018) -
Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains
por: Kuramata, Masato, et al.
Publicado: (2013) -
Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice
por: Bhandari, Aditi, et al.
Publicado: (2019) -
Genomic Prediction Accounting for Genotype by Environment Interaction Offers an Effective Framework for Breeding Simultaneously for Adaptation to an Abiotic Stress and Performance Under Normal Cropping Conditions in Rice
por: Ben Hassen, Manel, et al.
Publicado: (2018)