Cargando…
A machine learning approach to predicting psychosis using semantic density and latent content analysis
Subtle features in people’s everyday language may harbor the signs of future mental illness. Machine learning offers an approach for the rapid and accurate extraction of these signs. Here we investigate two potential linguistic indicators of psychosis in 40 participants of the North American Prodrom...
Autores principales: | Rezaii, Neguine, Walker, Elaine, Wolff, Phillip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565626/ https://www.ncbi.nlm.nih.gov/pubmed/31197184 http://dx.doi.org/10.1038/s41537-019-0077-9 |
Ejemplares similares
-
Less is more in language production: an information-theoretic analysis of agrammatism in primary progressive aphasia
por: Rezaii, Neguine, et al.
Publicado: (2023) -
A syntax–lexicon trade-off in language production
por: Rezaii, Neguine, et al.
Publicado: (2022) -
A 29 Year-Old Woman with Cough and Dyspnea
por: Darazam, Ilad Alavi, et al.
Publicado: (2011) -
Latent Semantics of Action Verbs Reflect Phonetic Parameters of Intensity and Emotional Content
por: Petersen, Michael Kai
Publicado: (2015) -
Modelling the Latent Semantics of Diffusion Sources in Information Cascade Prediction
por: Huang, Ningbo, et al.
Publicado: (2021)