Cargando…

An Unobtrusive and Calibration-free Blood Pressure Estimation Method using Photoplethysmography and Biometrics

We introduce a novel paradigm to unobtrusively and optically measure blood pressure (BP) without calibration. The algorithm combines photoplethysmography (PPG) waveform analysis and biometrics to estimate BP, and was evaluated in subjects with various age, height, weight and BP levels (n = 1249). In...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Xiaoman, Ma, Zhimin, Zhang, Mingyou, Zhou, Ying, Dong, Wenfei, Song, Mingxuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565722/
https://www.ncbi.nlm.nih.gov/pubmed/31197243
http://dx.doi.org/10.1038/s41598-019-45175-2
Descripción
Sumario:We introduce a novel paradigm to unobtrusively and optically measure blood pressure (BP) without calibration. The algorithm combines photoplethysmography (PPG) waveform analysis and biometrics to estimate BP, and was evaluated in subjects with various age, height, weight and BP levels (n = 1249). In the young population (<50 years old) with low, medium and high systolic blood pressures (SBP, <120 mmHg; 120–139 mmHg; ≥140 mmHg), the fitting errors are 6.3 ± 7.2, −3.9 ± 7.2 and −20.2 ± 14.2 mmHg for SBP respectively; In the older population (>50 years old) with the same categories, the fitting errors are 12.8 ± 9.0, 0.5 ± 8.2 and −14.6 ± 11.5 mmHg for SBP respectively. A simple personalized calibration reduces fitting errors significantly (n = 147), and good peripheral perfusion helps to improve the fitting accuracy. In conclusion, PPG may be used to calculate BP without calibration in certain populations. When calibrated, it shows great potential to serially monitor BP fluctuation, which can bring tremendous economic and health benefits.