Cargando…
Coherent diffractive imaging of microtubules using an X-ray laser
X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565740/ https://www.ncbi.nlm.nih.gov/pubmed/31197138 http://dx.doi.org/10.1038/s41467-019-10448-x |
_version_ | 1783426711476502528 |
---|---|
author | Brändén, Gisela Hammarin, Greger Harimoorthy, Rajiv Johansson, Alexander Arnlund, David Malmerberg, Erik Barty, Anton Tångefjord, Stefan Berntsen, Peter DePonte, Daniel P. Seuring, Carolin White, Thomas A. Stellato, Francesco Bean, Richard Beyerlein, Kenneth R. Chavas, Leonard M. G. Fleckenstein, Holger Gati, Cornelius Ghoshdastider, Umesh Gumprecht, Lars Oberthür, Dominik Popp, David Seibert, Marvin Tilp, Thomas Messerschmidt, Marc Williams, Garth J. Loh, N. Duane Chapman, Henry N. Zwart, Peter Liang, Mengning Boutet, Sébastien Robinson, Robert C. Neutze, Richard |
author_facet | Brändén, Gisela Hammarin, Greger Harimoorthy, Rajiv Johansson, Alexander Arnlund, David Malmerberg, Erik Barty, Anton Tångefjord, Stefan Berntsen, Peter DePonte, Daniel P. Seuring, Carolin White, Thomas A. Stellato, Francesco Bean, Richard Beyerlein, Kenneth R. Chavas, Leonard M. G. Fleckenstein, Holger Gati, Cornelius Ghoshdastider, Umesh Gumprecht, Lars Oberthür, Dominik Popp, David Seibert, Marvin Tilp, Thomas Messerschmidt, Marc Williams, Garth J. Loh, N. Duane Chapman, Henry N. Zwart, Peter Liang, Mengning Boutet, Sébastien Robinson, Robert C. Neutze, Richard |
author_sort | Brändén, Gisela |
collection | PubMed |
description | X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature. |
format | Online Article Text |
id | pubmed-6565740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65657402019-06-21 Coherent diffractive imaging of microtubules using an X-ray laser Brändén, Gisela Hammarin, Greger Harimoorthy, Rajiv Johansson, Alexander Arnlund, David Malmerberg, Erik Barty, Anton Tångefjord, Stefan Berntsen, Peter DePonte, Daniel P. Seuring, Carolin White, Thomas A. Stellato, Francesco Bean, Richard Beyerlein, Kenneth R. Chavas, Leonard M. G. Fleckenstein, Holger Gati, Cornelius Ghoshdastider, Umesh Gumprecht, Lars Oberthür, Dominik Popp, David Seibert, Marvin Tilp, Thomas Messerschmidt, Marc Williams, Garth J. Loh, N. Duane Chapman, Henry N. Zwart, Peter Liang, Mengning Boutet, Sébastien Robinson, Robert C. Neutze, Richard Nat Commun Article X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature. Nature Publishing Group UK 2019-06-13 /pmc/articles/PMC6565740/ /pubmed/31197138 http://dx.doi.org/10.1038/s41467-019-10448-x Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Brändén, Gisela Hammarin, Greger Harimoorthy, Rajiv Johansson, Alexander Arnlund, David Malmerberg, Erik Barty, Anton Tångefjord, Stefan Berntsen, Peter DePonte, Daniel P. Seuring, Carolin White, Thomas A. Stellato, Francesco Bean, Richard Beyerlein, Kenneth R. Chavas, Leonard M. G. Fleckenstein, Holger Gati, Cornelius Ghoshdastider, Umesh Gumprecht, Lars Oberthür, Dominik Popp, David Seibert, Marvin Tilp, Thomas Messerschmidt, Marc Williams, Garth J. Loh, N. Duane Chapman, Henry N. Zwart, Peter Liang, Mengning Boutet, Sébastien Robinson, Robert C. Neutze, Richard Coherent diffractive imaging of microtubules using an X-ray laser |
title | Coherent diffractive imaging of microtubules using an X-ray laser |
title_full | Coherent diffractive imaging of microtubules using an X-ray laser |
title_fullStr | Coherent diffractive imaging of microtubules using an X-ray laser |
title_full_unstemmed | Coherent diffractive imaging of microtubules using an X-ray laser |
title_short | Coherent diffractive imaging of microtubules using an X-ray laser |
title_sort | coherent diffractive imaging of microtubules using an x-ray laser |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565740/ https://www.ncbi.nlm.nih.gov/pubmed/31197138 http://dx.doi.org/10.1038/s41467-019-10448-x |
work_keys_str_mv | AT brandengisela coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT hammaringreger coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT harimoorthyrajiv coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT johanssonalexander coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT arnlunddavid coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT malmerbergerik coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT bartyanton coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT tangefjordstefan coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT berntsenpeter coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT depontedanielp coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT seuringcarolin coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT whitethomasa coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT stellatofrancesco coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT beanrichard coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT beyerleinkennethr coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT chavasleonardmg coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT fleckensteinholger coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT gaticornelius coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT ghoshdastiderumesh coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT gumprechtlars coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT oberthurdominik coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT poppdavid coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT seibertmarvin coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT tilpthomas coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT messerschmidtmarc coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT williamsgarthj coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT lohnduane coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT chapmanhenryn coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT zwartpeter coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT liangmengning coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT boutetsebastien coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT robinsonrobertc coherentdiffractiveimagingofmicrotubulesusinganxraylaser AT neutzerichard coherentdiffractiveimagingofmicrotubulesusinganxraylaser |