Cargando…

MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis

Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse...

Descripción completa

Detalles Bibliográficos
Autores principales: Pons-Espinal, Meritxell, Gasperini, Caterina, Marzi, Matteo J., Braccia, Clarissa, Armirotti, Andrea, Pötzsch, Alexandra, Walker, Tara L., Fabel, Klaus, Nicassio, Francesco, Kempermann, Gerd, De Pietri Tonelli, Davide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565832/
https://www.ncbi.nlm.nih.gov/pubmed/31130358
http://dx.doi.org/10.1016/j.stemcr.2019.04.020
_version_ 1783426727060439040
author Pons-Espinal, Meritxell
Gasperini, Caterina
Marzi, Matteo J.
Braccia, Clarissa
Armirotti, Andrea
Pötzsch, Alexandra
Walker, Tara L.
Fabel, Klaus
Nicassio, Francesco
Kempermann, Gerd
De Pietri Tonelli, Davide
author_facet Pons-Espinal, Meritxell
Gasperini, Caterina
Marzi, Matteo J.
Braccia, Clarissa
Armirotti, Andrea
Pötzsch, Alexandra
Walker, Tara L.
Fabel, Klaus
Nicassio, Francesco
Kempermann, Gerd
De Pietri Tonelli, Davide
author_sort Pons-Espinal, Meritxell
collection PubMed
description Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging.
format Online
Article
Text
id pubmed-6565832
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-65658322019-06-20 MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis Pons-Espinal, Meritxell Gasperini, Caterina Marzi, Matteo J. Braccia, Clarissa Armirotti, Andrea Pötzsch, Alexandra Walker, Tara L. Fabel, Klaus Nicassio, Francesco Kempermann, Gerd De Pietri Tonelli, Davide Stem Cell Reports Article Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging. Elsevier 2019-05-23 /pmc/articles/PMC6565832/ /pubmed/31130358 http://dx.doi.org/10.1016/j.stemcr.2019.04.020 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Pons-Espinal, Meritxell
Gasperini, Caterina
Marzi, Matteo J.
Braccia, Clarissa
Armirotti, Andrea
Pötzsch, Alexandra
Walker, Tara L.
Fabel, Klaus
Nicassio, Francesco
Kempermann, Gerd
De Pietri Tonelli, Davide
MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis
title MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis
title_full MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis
title_fullStr MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis
title_full_unstemmed MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis
title_short MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis
title_sort mir-135a-5p is critical for exercise-induced adult neurogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565832/
https://www.ncbi.nlm.nih.gov/pubmed/31130358
http://dx.doi.org/10.1016/j.stemcr.2019.04.020
work_keys_str_mv AT ponsespinalmeritxell mir135a5piscriticalforexerciseinducedadultneurogenesis
AT gasperinicaterina mir135a5piscriticalforexerciseinducedadultneurogenesis
AT marzimatteoj mir135a5piscriticalforexerciseinducedadultneurogenesis
AT bracciaclarissa mir135a5piscriticalforexerciseinducedadultneurogenesis
AT armirottiandrea mir135a5piscriticalforexerciseinducedadultneurogenesis
AT potzschalexandra mir135a5piscriticalforexerciseinducedadultneurogenesis
AT walkertaral mir135a5piscriticalforexerciseinducedadultneurogenesis
AT fabelklaus mir135a5piscriticalforexerciseinducedadultneurogenesis
AT nicassiofrancesco mir135a5piscriticalforexerciseinducedadultneurogenesis
AT kempermanngerd mir135a5piscriticalforexerciseinducedadultneurogenesis
AT depietritonellidavide mir135a5piscriticalforexerciseinducedadultneurogenesis