Cargando…
Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and i...
Autores principales: | Colclough, Giles L., Woolrich, Mark W., Harrison, Samuel J., Rojas López, Pedro A., Valdes-Sosa, Pedro A., Smith, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565932/ https://www.ncbi.nlm.nih.gov/pubmed/29746906 http://dx.doi.org/10.1016/j.neuroimage.2018.04.077 |
Ejemplares similares
-
Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models
por: Paz-Linares, Deirel, et al.
Publicado: (2017) -
Stepwise Covariance-Free Common Principal Components (CF-CPC) With an Application to Neuroscience
por: Riaz, Usama, et al.
Publicado: (2021) -
Hierarchical Bayesian estimation of covariate effects on airway and alveolar nitric oxide
por: Weng, Jingying, et al.
Publicado: (2021) -
Spectral guided sparse inverse covariance estimation of metabolic networks in Parkinson’s disease
por: Spetsieris, Phoebe G., et al.
Publicado: (2020) -
Genotypic covariance matrices and their inverses for models allowing dominance and inbreeding
por: Smith, SP, et al.
Publicado: (1990)