Cargando…
High glucose induces apoptosis of HUVECs in a mitochondria-dependent manner by suppressing hexokinase 2 expression
Hyperglycemia in patients with diabetes induces vascular endothelial cell apoptosis and subsequent vasculopathy. The aim of the current study was to investigate the pathological mechanism of hyperglycemia-induced endothelial cell apoptosis and vasculopathy using human umbilical vein endothelial cell...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566108/ https://www.ncbi.nlm.nih.gov/pubmed/31258698 http://dx.doi.org/10.3892/etm.2019.7609 |
Sumario: | Hyperglycemia in patients with diabetes induces vascular endothelial cell apoptosis and subsequent vasculopathy. The aim of the current study was to investigate the pathological mechanism of hyperglycemia-induced endothelial cell apoptosis and vasculopathy using human umbilical vein endothelial cells. As high glucose-induced apoptosis is caused by elevated mitochondrial permeability-mediated release of mitochondrial cytochrome c, the current study examined voltage-dependent anion channel (VDAC1), the controller of mitochondrial permeability, and its regulators, hexokinase2 (HK2), Bcl-2 and Bax. The current study demonstrated that HK2 may be involved in high glucose-induced cell apoptosis, as HK2 overexpression partially reversed high glucose-induced downregulation of mitochondrial/cellular HK2 and Bcl-2 as well as upregulation of mitochondrial Bax. These results suggest that HK2 overexpression partially reversed the reduced binding of HK2 and Bcl-2 and the enhanced binding of Bax to VDAC1, which reduced the high mitochondrial permeability observed under high-glucose conditions. Furthermore, high glucose reduced HK2 transcription via down-regulation of the HK2 transcriptional factor, peroxisome proliferator activated receptor γ (PPARγ). Taken together, these results suggest that PPARγ/HK2 may be novel targets for the prevention of diabetic vasculopathy. |
---|