Cargando…
Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint
Mobile crowd sensing (MCS) is a new computing paradigm for the internet of things, and it is widely accepted as a powerful means to achieve urban-scale sensing and data collection. In the MCS campaign, the smart mobilephone users can detect their surrounding environments with their on-phone sensors...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566162/ https://www.ncbi.nlm.nih.gov/pubmed/31126028 http://dx.doi.org/10.3390/s19102371 |
_version_ | 1783426789752700928 |
---|---|
author | Wang, Yanan Sun, Guodong Ding, Xingjian |
author_facet | Wang, Yanan Sun, Guodong Ding, Xingjian |
author_sort | Wang, Yanan |
collection | PubMed |
description | Mobile crowd sensing (MCS) is a new computing paradigm for the internet of things, and it is widely accepted as a powerful means to achieve urban-scale sensing and data collection. In the MCS campaign, the smart mobilephone users can detect their surrounding environments with their on-phone sensors and return the sensing data to the MCS organizer. In this paper, we focus on the coverage-balancing user selection (CBUS) problem with a budget constraint. Solving the CBUS problem aims to select a proper subset of users such that their sensing coverage is as large and balancing as possible, yet without violating the budget specified by the MCS campaign. We first propose a novel coverage balance-based sensing utility model, which effectively captures the joint requirement of the MCS requester for coverage area and coverage balance. We then formally define the CBUS problem under the proposed sensing utility model. Because of the NP-hardness of the CBUS problem, we design a heuristic-based algorithm, called MIA, which tactfully employs the maximum independent set model to determine a preliminary subset of users from all the available users and then adjusts this user subset to improve the budget implementation. MIA also includes a fast approach to calculating the area of the union coverage with any complicated boundaries, which is also applicable to any MCS scenarios that are set up with the coverage area-based sensing utility. The extensive numeric experiments show the efficacy of our designs both in coverage balance and in the total coverage area. |
format | Online Article Text |
id | pubmed-6566162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65661622019-06-17 Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint Wang, Yanan Sun, Guodong Ding, Xingjian Sensors (Basel) Article Mobile crowd sensing (MCS) is a new computing paradigm for the internet of things, and it is widely accepted as a powerful means to achieve urban-scale sensing and data collection. In the MCS campaign, the smart mobilephone users can detect their surrounding environments with their on-phone sensors and return the sensing data to the MCS organizer. In this paper, we focus on the coverage-balancing user selection (CBUS) problem with a budget constraint. Solving the CBUS problem aims to select a proper subset of users such that their sensing coverage is as large and balancing as possible, yet without violating the budget specified by the MCS campaign. We first propose a novel coverage balance-based sensing utility model, which effectively captures the joint requirement of the MCS requester for coverage area and coverage balance. We then formally define the CBUS problem under the proposed sensing utility model. Because of the NP-hardness of the CBUS problem, we design a heuristic-based algorithm, called MIA, which tactfully employs the maximum independent set model to determine a preliminary subset of users from all the available users and then adjusts this user subset to improve the budget implementation. MIA also includes a fast approach to calculating the area of the union coverage with any complicated boundaries, which is also applicable to any MCS scenarios that are set up with the coverage area-based sensing utility. The extensive numeric experiments show the efficacy of our designs both in coverage balance and in the total coverage area. MDPI 2019-05-23 /pmc/articles/PMC6566162/ /pubmed/31126028 http://dx.doi.org/10.3390/s19102371 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Yanan Sun, Guodong Ding, Xingjian Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint |
title | Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint |
title_full | Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint |
title_fullStr | Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint |
title_full_unstemmed | Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint |
title_short | Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint |
title_sort | coverage-balancing user selection in mobile crowd sensing with budget constraint |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566162/ https://www.ncbi.nlm.nih.gov/pubmed/31126028 http://dx.doi.org/10.3390/s19102371 |
work_keys_str_mv | AT wangyanan coveragebalancinguserselectioninmobilecrowdsensingwithbudgetconstraint AT sunguodong coveragebalancinguserselectioninmobilecrowdsensingwithbudgetconstraint AT dingxingjian coveragebalancinguserselectioninmobilecrowdsensingwithbudgetconstraint |