Cargando…

Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs

Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent [Formula: s...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Hofstad, Remco, Kliem, Sandra, van Leeuwaarden, Johan S. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566222/
https://www.ncbi.nlm.nih.gov/pubmed/31258182
http://dx.doi.org/10.1007/s10955-018-1978-0
_version_ 1783426804207321088
author van der Hofstad, Remco
Kliem, Sandra
van Leeuwaarden, Johan S. H.
author_facet van der Hofstad, Remco
Kliem, Sandra
van Leeuwaarden, Johan S. H.
author_sort van der Hofstad, Remco
collection PubMed
description Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent [Formula: see text] , the sequence of clusters ordered in decreasing size and multiplied through by [Formula: see text] converges as [Formula: see text] to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237–269, 2001) for the Erdős–Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.
format Online
Article
Text
id pubmed-6566222
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-65662222019-06-28 Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs van der Hofstad, Remco Kliem, Sandra van Leeuwaarden, Johan S. H. J Stat Phys Article Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent [Formula: see text] , the sequence of clusters ordered in decreasing size and multiplied through by [Formula: see text] converges as [Formula: see text] to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237–269, 2001) for the Erdős–Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments. Springer US 2018-03-03 2018 /pmc/articles/PMC6566222/ /pubmed/31258182 http://dx.doi.org/10.1007/s10955-018-1978-0 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
van der Hofstad, Remco
Kliem, Sandra
van Leeuwaarden, Johan S. H.
Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
title Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
title_full Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
title_fullStr Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
title_full_unstemmed Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
title_short Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
title_sort cluster tails for critical power-law inhomogeneous random graphs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566222/
https://www.ncbi.nlm.nih.gov/pubmed/31258182
http://dx.doi.org/10.1007/s10955-018-1978-0
work_keys_str_mv AT vanderhofstadremco clustertailsforcriticalpowerlawinhomogeneousrandomgraphs
AT kliemsandra clustertailsforcriticalpowerlawinhomogeneousrandomgraphs
AT vanleeuwaardenjohansh clustertailsforcriticalpowerlawinhomogeneousrandomgraphs