Cargando…
Adaptive Segmentation of Remote Sensing Images Based on Global Spatial Information
The problem of image segmentation can be reduced to the clustering of pixels in the intensity space. The traditional fuzzy c-means algorithm only uses pixel membership information and does not make full use of spatial information around the pixel, so it is not ideal for noise reduction. Therefore, t...
Autores principales: | Li, Muqing, Xu, Luping, Gao, Shan, Xu, Na, Yan, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566240/ https://www.ncbi.nlm.nih.gov/pubmed/31137704 http://dx.doi.org/10.3390/s19102385 |
Ejemplares similares
-
An Improved Adaptive Spatial Preprocessing Method for Remote Sensing Images
por: Zheng, Liangliang, et al.
Publicado: (2021) -
Fast Semantic Segmentation of Remote Sensing Images Using a Network That Integrates Global and Local Information
por: Wu, Boyang, et al.
Publicado: (2023) -
Remote Sensing Image Classification Using the Spectral-Spatial Distance Based on Information Content
por: Chen, Siya, et al.
Publicado: (2018) -
Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters
por: Zhu, Hongchun, et al.
Publicado: (2016) -
SCU-Net: Semantic Segmentation Network for Learning Channel Information on Remote Sensing Images
por: Wang, Wei, et al.
Publicado: (2022)