Cargando…

A Note on Spatial Averaging and Shear Stresses Within Urban Canopies

One-dimensional urban models embedded in mesoscale numerical models may place several grid points within the urban canopy. This requires an accurate parametrization for shear stresses (i.e. vertical momentum fluxes) including the dispersive stress and momentum sinks at these points. We used a case s...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Zheng-Tong, Fuka, Vladimir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566258/
https://www.ncbi.nlm.nih.gov/pubmed/31258158
http://dx.doi.org/10.1007/s10546-017-0321-7
Descripción
Sumario:One-dimensional urban models embedded in mesoscale numerical models may place several grid points within the urban canopy. This requires an accurate parametrization for shear stresses (i.e. vertical momentum fluxes) including the dispersive stress and momentum sinks at these points. We used a case study with a packing density of 33% and checked rigorously the vertical variation of spatially-averaged total shear stress, which can be used in a one-dimensional column urban model. We found that the intrinsic spatial average, in which the volume or area of the solid parts are not included in the average process, yield greater time–spatial average of total stress within the canopy and a more evident abrupt change at the top of the buildings than the comprehensive spatial average, in which the volume or area of the solid parts are included in the average.