Cargando…
Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression
This study aims to investigate the prediction of critical buckling load of steel columns using two hybrid Artificial Intelligence (AI) models such as Adaptive Neuro-Fuzzy Inference System optimized by Genetic Algorithm (ANFIS-GA) and Adaptive Neuro-Fuzzy Inference System optimized by Particle Swarm...
Autores principales: | Le, Lu Minh, Ly, Hai-Bang, Pham, Binh Thai, Le, Vuong Minh, Pham, Tuan Anh, Nguyen, Duy-Hung, Tran, Xuan-Tuan, Le, Tien-Thinh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566284/ https://www.ncbi.nlm.nih.gov/pubmed/31121948 http://dx.doi.org/10.3390/ma12101670 |
Ejemplares similares
-
Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials
por: Ly, Hai-Bang, et al.
Publicado: (2019) -
Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression
por: Nguyen, Hung Quang, et al.
Publicado: (2020) -
Parametric Investigation of Particle Swarm Optimization to Improve the Performance of the Adaptive Neuro-Fuzzy Inference System in Determining the Buckling Capacity of Circular Opening Steel Beams
por: Nguyen, Quang Hung, et al.
Publicado: (2020) -
A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns
por: Nguyen, Quang Hung, et al.
Publicado: (2020) -
Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete
por: Dao, Dong Van, et al.
Publicado: (2019)