Cargando…

Transition Metal (Fe, Co, Ni) Nanoparticles on Selective Amino-N-Doped Carbon as High-Performance Oxygen Reduction Reaction Electrocatalyst

Metal-air batteries are attracting increasing attention as a superior renewable energy conversion device due to their high performance and strong potential. However, the high cost and low stability of the current Pt catalyst is the main obstacle preventing wide industrial application. In this work,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Seonghee, Kato, Shuhei, Ishizaki, Takahiro, Li, Oi Lun, Kang, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566341/
https://www.ncbi.nlm.nih.gov/pubmed/31091814
http://dx.doi.org/10.3390/nano9050742
Descripción
Sumario:Metal-air batteries are attracting increasing attention as a superior renewable energy conversion device due to their high performance and strong potential. However, the high cost and low stability of the current Pt catalyst is the main obstacle preventing wide industrial application. In this work, we applied a plasma process to fabricate aniline and a transition metals electrode (Fe, Co, Ni) as the carbon-nitrogen and the metal nanoparticle (NP) precursors, respectively, for selective metal/amino-N-doped carbon catalysts. All three as-synthesized catalysts exhibited dominant amino-N as the major C–N bonding state. In electrochemical testing, Co/amino-N-doped carbon showed positive E(1/2) potential (0.83 V vs. Reversible Hydrogen Electrode (RHE)). In addition, the calculated electron transfer number (n) of Co/amino-N-doped carbon at 0.5 V vs. RHE was 3.81, which was only slightly less than that of commercial Pt/C (3.97). This superior performance of transition metal/amino-N-doped carbon promotes it as an economical oxygen reduction reaction (ORR) electrocatalyst to replace expensive Pt/C in metal-air batteries.