Cargando…
On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals
In traditional solar cells, photogenerated energetic carriers (so-called hot carriers) rapidly relax to band edges via emission of phonons, prohibiting the extraction of their excess energy above the band gap. Quantum confined semiconductor nanocrystals, or quantum dots (QDs), were predicted to have...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566378/ https://www.ncbi.nlm.nih.gov/pubmed/31360405 http://dx.doi.org/10.1039/c9sc01339c |
_version_ | 1783426838747414528 |
---|---|
author | Li, Yulu Lai, Runchen Luo, Xiao Liu, Xue Ding, Tao Lu, Xin Wu, Kaifeng |
author_facet | Li, Yulu Lai, Runchen Luo, Xiao Liu, Xue Ding, Tao Lu, Xin Wu, Kaifeng |
author_sort | Li, Yulu |
collection | PubMed |
description | In traditional solar cells, photogenerated energetic carriers (so-called hot carriers) rapidly relax to band edges via emission of phonons, prohibiting the extraction of their excess energy above the band gap. Quantum confined semiconductor nanocrystals, or quantum dots (QDs), were predicted to have long-lived hot carriers enabled by a phonon bottleneck, i.e., the large inter-level spacings in QDs should result in inefficient phonon emissions. Here we study the effect of quantum confinement on hot carrier/exciton lifetime in lead halide perovskite nanocrystals. We synthesized a series of strongly confined CsPbBr(3) nanocrystals with edge lengths down to 2.6 nm, the smallest reported to date, and studied their hot exciton relaxation using ultrafast spectroscopy. We observed sub-ps hot exciton lifetimes in all the samples with edge lengths within 2.6–6.2 nm and thus the absence of a phonon bottleneck. Their well-resolved excitonic peaks allowed us to quantify hot carrier/exciton energy loss rates which increased with decreasing NC sizes. This behavior can be well reproduced by a nonadiabatic transition mechanism between excitonic states induced by coupling to surface ligands. |
format | Online Article Text |
id | pubmed-6566378 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-65663782019-07-29 On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals Li, Yulu Lai, Runchen Luo, Xiao Liu, Xue Ding, Tao Lu, Xin Wu, Kaifeng Chem Sci Chemistry In traditional solar cells, photogenerated energetic carriers (so-called hot carriers) rapidly relax to band edges via emission of phonons, prohibiting the extraction of their excess energy above the band gap. Quantum confined semiconductor nanocrystals, or quantum dots (QDs), were predicted to have long-lived hot carriers enabled by a phonon bottleneck, i.e., the large inter-level spacings in QDs should result in inefficient phonon emissions. Here we study the effect of quantum confinement on hot carrier/exciton lifetime in lead halide perovskite nanocrystals. We synthesized a series of strongly confined CsPbBr(3) nanocrystals with edge lengths down to 2.6 nm, the smallest reported to date, and studied their hot exciton relaxation using ultrafast spectroscopy. We observed sub-ps hot exciton lifetimes in all the samples with edge lengths within 2.6–6.2 nm and thus the absence of a phonon bottleneck. Their well-resolved excitonic peaks allowed us to quantify hot carrier/exciton energy loss rates which increased with decreasing NC sizes. This behavior can be well reproduced by a nonadiabatic transition mechanism between excitonic states induced by coupling to surface ligands. Royal Society of Chemistry 2019-05-06 /pmc/articles/PMC6566378/ /pubmed/31360405 http://dx.doi.org/10.1039/c9sc01339c Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Li, Yulu Lai, Runchen Luo, Xiao Liu, Xue Ding, Tao Lu, Xin Wu, Kaifeng On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals |
title | On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals
|
title_full | On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals
|
title_fullStr | On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals
|
title_full_unstemmed | On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals
|
title_short | On the absence of a phonon bottleneck in strongly confined CsPbBr(3) perovskite nanocrystals
|
title_sort | on the absence of a phonon bottleneck in strongly confined cspbbr(3) perovskite nanocrystals |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566378/ https://www.ncbi.nlm.nih.gov/pubmed/31360405 http://dx.doi.org/10.1039/c9sc01339c |
work_keys_str_mv | AT liyulu ontheabsenceofaphononbottleneckinstronglyconfinedcspbbr3perovskitenanocrystals AT lairunchen ontheabsenceofaphononbottleneckinstronglyconfinedcspbbr3perovskitenanocrystals AT luoxiao ontheabsenceofaphononbottleneckinstronglyconfinedcspbbr3perovskitenanocrystals AT liuxue ontheabsenceofaphononbottleneckinstronglyconfinedcspbbr3perovskitenanocrystals AT dingtao ontheabsenceofaphononbottleneckinstronglyconfinedcspbbr3perovskitenanocrystals AT luxin ontheabsenceofaphononbottleneckinstronglyconfinedcspbbr3perovskitenanocrystals AT wukaifeng ontheabsenceofaphononbottleneckinstronglyconfinedcspbbr3perovskitenanocrystals |