Cargando…
The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis
The recent surge of genomic data has prompted the investigation of substitution rate variation across the genome, as well as among lineages. Evolutionary trees inferred from distinct genomic regions may display branch lengths that differ between loci by simple proportionality constants, indicating t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566470/ https://www.ncbi.nlm.nih.gov/pubmed/31223232 http://dx.doi.org/10.1177/1176934319855988 |
_version_ | 1783426859551162368 |
---|---|
author | Mello, Beatriz Schrago, Carlos G |
author_facet | Mello, Beatriz Schrago, Carlos G |
author_sort | Mello, Beatriz |
collection | PubMed |
description | The recent surge of genomic data has prompted the investigation of substitution rate variation across the genome, as well as among lineages. Evolutionary trees inferred from distinct genomic regions may display branch lengths that differ between loci by simple proportionality constants, indicating that rate variation follows a pacemaker model, which may be attributed to lineage effects. Analyses of genes from diverse biological clades produced contrasting results, supporting either this model or alternative scenarios where multiple pacemakers exist. So far, an evaluation of the pacemaker hypothesis for all great apes has never been carried out. In this work, we tested whether the evolutionary rates of hominids conform to pacemakers, which were inferred accounting for gene tree/species tree discordance. For higher precision, substitution rates in branches were estimated with a calibration-free approach, the relative rate framework. A predominant evolutionary trend in great apes was evidenced by the recovery of a large pacemaker, encompassing most hominid genomic regions. In addition, the majority of genes followed a pace of evolution that was closely related to the strict molecular clock. However, slight rate decreases were recovered in the internal branches leading to humans, corroborating the hominoid slowdown hypothesis. Our findings suggest that in great apes, life history traits were the major drivers of substitution rate variation across the genome. |
format | Online Article Text |
id | pubmed-6566470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-65664702019-06-20 The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis Mello, Beatriz Schrago, Carlos G Evol Bioinform Online Original Research The recent surge of genomic data has prompted the investigation of substitution rate variation across the genome, as well as among lineages. Evolutionary trees inferred from distinct genomic regions may display branch lengths that differ between loci by simple proportionality constants, indicating that rate variation follows a pacemaker model, which may be attributed to lineage effects. Analyses of genes from diverse biological clades produced contrasting results, supporting either this model or alternative scenarios where multiple pacemakers exist. So far, an evaluation of the pacemaker hypothesis for all great apes has never been carried out. In this work, we tested whether the evolutionary rates of hominids conform to pacemakers, which were inferred accounting for gene tree/species tree discordance. For higher precision, substitution rates in branches were estimated with a calibration-free approach, the relative rate framework. A predominant evolutionary trend in great apes was evidenced by the recovery of a large pacemaker, encompassing most hominid genomic regions. In addition, the majority of genes followed a pace of evolution that was closely related to the strict molecular clock. However, slight rate decreases were recovered in the internal branches leading to humans, corroborating the hominoid slowdown hypothesis. Our findings suggest that in great apes, life history traits were the major drivers of substitution rate variation across the genome. SAGE Publications 2019-06-13 /pmc/articles/PMC6566470/ /pubmed/31223232 http://dx.doi.org/10.1177/1176934319855988 Text en © The Author(s) 2019 http://www.creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Mello, Beatriz Schrago, Carlos G The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis |
title | The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis |
title_full | The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis |
title_fullStr | The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis |
title_full_unstemmed | The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis |
title_short | The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis |
title_sort | estimated pacemaker for great apes supports the hominoid slowdown hypothesis |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566470/ https://www.ncbi.nlm.nih.gov/pubmed/31223232 http://dx.doi.org/10.1177/1176934319855988 |
work_keys_str_mv | AT mellobeatriz theestimatedpacemakerforgreatapessupportsthehominoidslowdownhypothesis AT schragocarlosg theestimatedpacemakerforgreatapessupportsthehominoidslowdownhypothesis AT mellobeatriz estimatedpacemakerforgreatapessupportsthehominoidslowdownhypothesis AT schragocarlosg estimatedpacemakerforgreatapessupportsthehominoidslowdownhypothesis |