Cargando…

Transcriptomic Analysis of MAPK Signaling in NSC-34 Motor Neurons Treated with Vitamin E

Vitamin E family is composed of different tocopherols and tocotrienols that are well-known as antioxidants but that exert also non-antioxidant effects. Oxidative stress may be involved in the progression of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), characterized by m...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiricosta, Luigi, Gugliandolo, Agnese, Tardiolo, Giuseppe, Bramanti, Placido, Mazzon, Emanuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566669/
https://www.ncbi.nlm.nih.gov/pubmed/31096690
http://dx.doi.org/10.3390/nu11051081
Descripción
Sumario:Vitamin E family is composed of different tocopherols and tocotrienols that are well-known as antioxidants but that exert also non-antioxidant effects. Oxidative stress may be involved in the progression of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), characterized by motor neuron death. The aim of the study was the evaluation of the changes induced in the transcriptional profile of NSC-34 motor neurons treated with α-tocopherol. In particular, cells were treated for 24 h with 10 µM α-tocopherol, RNA was extracted and transcriptomic analysis was performed using Next Generation Sequencing. Vitamin E treatment modulated MAPK signaling pathway. The evaluation revealed that 34 and 12 genes, respectively belonging to “Classical MAP kinase pathway” and “JNK and p38 MAP kinase pathway”, were involved. In particular, a downregulation of the genes encoding for p38 (Log(2) fold change −0.87 and −0.67) and JNK (Log(2) fold change −0.16) was found. On the contrary, the gene encoding for ERK showed a higher expression in cells treated with vitamin E (Log(2) fold change 0.30). Since p38 and JNK seem more involved in cell death, while ERK in cell survival, the data suggested that vitamin E treatment may exert a protective role in NSC-34 motor neurons. Moreover, Vitamin E treatment reduced the expression of the genes which encode proteins involved in mitophagy. These results indicate that vitamin E may be an efficacious therapy in preventing motor neuron death, opening new strategies for those diseases that involve motor neurons, including ALS.