Cargando…
Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing
Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566670/ https://www.ncbi.nlm.nih.gov/pubmed/31137505 http://dx.doi.org/10.3390/ma12101642 |
_version_ | 1783426901455405056 |
---|---|
author | Reich, Matthew J. Woern, Aubrey L. Tanikella, Nagendra G. Pearce, Joshua M. |
author_facet | Reich, Matthew J. Woern, Aubrey L. Tanikella, Nagendra G. Pearce, Joshua M. |
author_sort | Reich, Matthew J. |
collection | PubMed |
description | Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm(2) was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved compression tests were used to determine the mechanical properties of PC and were compared with filament printing and the bulk virgin material. The results showed the tensile strength of parts manufactured from the recycled PC particles (64.9 MPa) were comparable to that of the commercial filament printed on desktop (62.2 MPa) and large-format (66.3 MPa) 3D printers. Three case study applications were investigated: (i) using PC as a rapid molding technology for lower melting point thermoplastics, (ii) printed parts for high temperature applications, and (iii) printed parts for high-strength applications. The results show that recycled PC particle-based 3D printing can produce high-strength and heat-resistant products at low costs. |
format | Online Article Text |
id | pubmed-6566670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65666702019-06-17 Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing Reich, Matthew J. Woern, Aubrey L. Tanikella, Nagendra G. Pearce, Joshua M. Materials (Basel) Article Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm(2) was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved compression tests were used to determine the mechanical properties of PC and were compared with filament printing and the bulk virgin material. The results showed the tensile strength of parts manufactured from the recycled PC particles (64.9 MPa) were comparable to that of the commercial filament printed on desktop (62.2 MPa) and large-format (66.3 MPa) 3D printers. Three case study applications were investigated: (i) using PC as a rapid molding technology for lower melting point thermoplastics, (ii) printed parts for high temperature applications, and (iii) printed parts for high-strength applications. The results show that recycled PC particle-based 3D printing can produce high-strength and heat-resistant products at low costs. MDPI 2019-05-20 /pmc/articles/PMC6566670/ /pubmed/31137505 http://dx.doi.org/10.3390/ma12101642 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Reich, Matthew J. Woern, Aubrey L. Tanikella, Nagendra G. Pearce, Joshua M. Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing |
title | Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing |
title_full | Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing |
title_fullStr | Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing |
title_full_unstemmed | Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing |
title_short | Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing |
title_sort | mechanical properties and applications of recycled polycarbonate particle material extrusion-based additive manufacturing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566670/ https://www.ncbi.nlm.nih.gov/pubmed/31137505 http://dx.doi.org/10.3390/ma12101642 |
work_keys_str_mv | AT reichmatthewj mechanicalpropertiesandapplicationsofrecycledpolycarbonateparticlematerialextrusionbasedadditivemanufacturing AT woernaubreyl mechanicalpropertiesandapplicationsofrecycledpolycarbonateparticlematerialextrusionbasedadditivemanufacturing AT tanikellanagendrag mechanicalpropertiesandapplicationsofrecycledpolycarbonateparticlematerialextrusionbasedadditivemanufacturing AT pearcejoshuam mechanicalpropertiesandapplicationsofrecycledpolycarbonateparticlematerialextrusionbasedadditivemanufacturing |