Cargando…
A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells
This paper focuses on a literature analysis and review of sulfonated polymer (s-Poly) composites, sulfonated organic, inorganic, and organic–inorganic hybrid membranes for polymer electrolyte membrane fuel cell (PEM) systems, particularly for methanol fuel cell applications. In this review, we focus...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566683/ https://www.ncbi.nlm.nih.gov/pubmed/31035423 http://dx.doi.org/10.3390/nano9050668 |
Sumario: | This paper focuses on a literature analysis and review of sulfonated polymer (s-Poly) composites, sulfonated organic, inorganic, and organic–inorganic hybrid membranes for polymer electrolyte membrane fuel cell (PEM) systems, particularly for methanol fuel cell applications. In this review, we focused mainly on the detailed analysis of the distinct segment of s-Poly composites/organic–inorganic hybrid membranes, the relationship between composite/organic– inorganic materials, structure, and performance. The ion exchange membrane, their size distribution and interfacial adhesion between the s-Poly composites, nanofillers, and functionalized nanofillers are also discussed. The paper emphasizes the enhancement of the s-Poly composites/organic–inorganic hybrid membrane properties such as low electronic conductivity, high proton conductivity, high mechanical properties, thermal stability, and water uptake are evaluated and compared with commercially available Nafion(®) membrane. |
---|