Cargando…
Interfacial Engineering of Graphene Nanosheets at MgO Particles for Thermal Conductivity Enhancement of Polymer Composites
An important task in facilitating the development of thermally conducting graphene/polymer nanocomposites is to suppress the intrinsically strong intersheet π-π stacking of graphene, and thereby to improve the exfoliation and dispersion of graphene in the matrix. Here, a pre-programmed intercalation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566908/ https://www.ncbi.nlm.nih.gov/pubmed/31137667 http://dx.doi.org/10.3390/nano9050798 |
Sumario: | An important task in facilitating the development of thermally conducting graphene/polymer nanocomposites is to suppress the intrinsically strong intersheet π-π stacking of graphene, and thereby to improve the exfoliation and dispersion of graphene in the matrix. Here, a pre-programmed intercalation approach to realize the in situ growth of graphene nanosheets at the inorganic template is demonstrated. Specifically, microsized MgO granules with controlled geometrical size were synthesized using a precipitation method, allowing the simultaneous realization of high surface activity. In the presence of a carbon and nitrogen source, the MgO granules were ready to induce the formation of graphene nanosheets (G@MgO), which allowed for the creation of tenacious linkages between graphene and template. More importantly, the incorporation of G@MgO into polymer composites largely pushed up the thermal conductivity, climbing from 0.39 W/m∙K for pristine polyethylene to 8.64 W/m∙K for polyethylene/G@MgO (60/40). This was accompanied by the simultaneous promotion of mechanical properties (tensile strength of around 30 MPa until 40 wt % addition of G@MgO), in contrast to the noteworthy decline of tensile strength for MgO-filled composites with over 20 wt.% fillers. |
---|