Cargando…
On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers
Due to its high biocompatibility, bio-degradability, and low cost, cellulose finds application in disparate areas of research. Here we focus our attention on the potential applications of cellulose nanofiber in cement-based materials for the building sector. We first describe the chemical/morphologi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566964/ https://www.ncbi.nlm.nih.gov/pubmed/31096559 http://dx.doi.org/10.3390/ma12101584 |
_version_ | 1783426967074242560 |
---|---|
author | Reixach, Rafel Claramunt, Josep Chamorro, M. Àngel Llorens, Joan Pareta, M. Mercè Tarrés, Quim Mutjé, Pere Delgado-Aguilar, Marc |
author_facet | Reixach, Rafel Claramunt, Josep Chamorro, M. Àngel Llorens, Joan Pareta, M. Mercè Tarrés, Quim Mutjé, Pere Delgado-Aguilar, Marc |
author_sort | Reixach, Rafel |
collection | PubMed |
description | Due to its high biocompatibility, bio-degradability, and low cost, cellulose finds application in disparate areas of research. Here we focus our attention on the potential applications of cellulose nanofiber in cement-based materials for the building sector. We first describe the chemical/morphological composition of cellulose fibers, their process and treatment, the characterization of cement-based composites, and their flexural strength. In recent research in this field, cellulose has been considered in the form of nano-sized particles, i.e., cellulose nanofibers (CNF) or cellulose nanocrystals (CNC). CNF and CNC are used for several reasons, including their mechanical and thermal properties, their extended surface area and low toxicity. This study presents some potential applications of lignocellulosic micro/nanofibers (LCMNF) in cement-based composites in order to improve flexural strength. Samples were made with 0.5-1.0-1.5-2.0 wt% of LCMNF obtained from pine sawdust, CEM I (Portland) and a 1:3 cement-water ratio. The composites were then tested for flexural strength at 7, 14, and 28 days and the evolution of flexural strength was assessed after water immersion during 72 h. Scanning electron microscopy was employed to visualize the bond between LCMNF and the cement matrix. Results showed that LCMNF improved the flexural strength of the composite in all the dosages used. |
format | Online Article Text |
id | pubmed-6566964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65669642019-06-17 On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers Reixach, Rafel Claramunt, Josep Chamorro, M. Àngel Llorens, Joan Pareta, M. Mercè Tarrés, Quim Mutjé, Pere Delgado-Aguilar, Marc Materials (Basel) Article Due to its high biocompatibility, bio-degradability, and low cost, cellulose finds application in disparate areas of research. Here we focus our attention on the potential applications of cellulose nanofiber in cement-based materials for the building sector. We first describe the chemical/morphological composition of cellulose fibers, their process and treatment, the characterization of cement-based composites, and their flexural strength. In recent research in this field, cellulose has been considered in the form of nano-sized particles, i.e., cellulose nanofibers (CNF) or cellulose nanocrystals (CNC). CNF and CNC are used for several reasons, including their mechanical and thermal properties, their extended surface area and low toxicity. This study presents some potential applications of lignocellulosic micro/nanofibers (LCMNF) in cement-based composites in order to improve flexural strength. Samples were made with 0.5-1.0-1.5-2.0 wt% of LCMNF obtained from pine sawdust, CEM I (Portland) and a 1:3 cement-water ratio. The composites were then tested for flexural strength at 7, 14, and 28 days and the evolution of flexural strength was assessed after water immersion during 72 h. Scanning electron microscopy was employed to visualize the bond between LCMNF and the cement matrix. Results showed that LCMNF improved the flexural strength of the composite in all the dosages used. MDPI 2019-05-15 /pmc/articles/PMC6566964/ /pubmed/31096559 http://dx.doi.org/10.3390/ma12101584 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Reixach, Rafel Claramunt, Josep Chamorro, M. Àngel Llorens, Joan Pareta, M. Mercè Tarrés, Quim Mutjé, Pere Delgado-Aguilar, Marc On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers |
title | On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers |
title_full | On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers |
title_fullStr | On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers |
title_full_unstemmed | On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers |
title_short | On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers |
title_sort | on the path to a new generation of cement-based composites through the use of lignocellulosic micro/nanofibers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566964/ https://www.ncbi.nlm.nih.gov/pubmed/31096559 http://dx.doi.org/10.3390/ma12101584 |
work_keys_str_mv | AT reixachrafel onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers AT claramuntjosep onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers AT chamorromangel onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers AT llorensjoan onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers AT paretammerce onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers AT tarresquim onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers AT mutjepere onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers AT delgadoaguilarmarc onthepathtoanewgenerationofcementbasedcompositesthroughtheuseoflignocellulosicmicronanofibers |