Cargando…
Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies
The paper presents experimental tests of unidirectional double cantilever beams made of a glass fiber reinforced (GFRP) laminate. The critical value of the strain energy release rate (c-SERR or G(IC)), i.e., the mode I fracture toughness of the considered material was determined with three different...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566972/ https://www.ncbi.nlm.nih.gov/pubmed/31100829 http://dx.doi.org/10.3390/ma12101607 |
_version_ | 1783426968907153408 |
---|---|
author | Samborski, Sylwester Gliszczynski, Adrian Rzeczkowski, Jakub Wiacek, Nina |
author_facet | Samborski, Sylwester Gliszczynski, Adrian Rzeczkowski, Jakub Wiacek, Nina |
author_sort | Samborski, Sylwester |
collection | PubMed |
description | The paper presents experimental tests of unidirectional double cantilever beams made of a glass fiber reinforced (GFRP) laminate. The critical value of the strain energy release rate (c-SERR or G(IC)), i.e., the mode I fracture toughness of the considered material was determined with three different methods: the compliance calibration method (CC), the modified compliance calibration method (MCC), and the corrected beam theory (CBT). Due to the common difficulties in precise definition of delamination initiation force, the Acoustic Emission (AE) technique was applied as an auxiliary source of data. The failure process was monitored, as well, in order to detect and identify different damage phenomena. This was achieved through a detailed analysis of the raw AE signal subjected to fast Fourier transformation (FFT). The frequency spectra revealed three dominating frequency bands with the basic one described by the average value of 63.1 kHz, revealing intensive delamination processes. This way, not only precise values of the critical SERR, but also the information on damage evolution during propagation of delamination, was obtained. |
format | Online Article Text |
id | pubmed-6566972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65669722019-06-17 Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies Samborski, Sylwester Gliszczynski, Adrian Rzeczkowski, Jakub Wiacek, Nina Materials (Basel) Article The paper presents experimental tests of unidirectional double cantilever beams made of a glass fiber reinforced (GFRP) laminate. The critical value of the strain energy release rate (c-SERR or G(IC)), i.e., the mode I fracture toughness of the considered material was determined with three different methods: the compliance calibration method (CC), the modified compliance calibration method (MCC), and the corrected beam theory (CBT). Due to the common difficulties in precise definition of delamination initiation force, the Acoustic Emission (AE) technique was applied as an auxiliary source of data. The failure process was monitored, as well, in order to detect and identify different damage phenomena. This was achieved through a detailed analysis of the raw AE signal subjected to fast Fourier transformation (FFT). The frequency spectra revealed three dominating frequency bands with the basic one described by the average value of 63.1 kHz, revealing intensive delamination processes. This way, not only precise values of the critical SERR, but also the information on damage evolution during propagation of delamination, was obtained. MDPI 2019-05-16 /pmc/articles/PMC6566972/ /pubmed/31100829 http://dx.doi.org/10.3390/ma12101607 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Samborski, Sylwester Gliszczynski, Adrian Rzeczkowski, Jakub Wiacek, Nina Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies |
title | Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies |
title_full | Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies |
title_fullStr | Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies |
title_full_unstemmed | Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies |
title_short | Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part I: Experimental Studies |
title_sort | mode i interlaminar fracture of glass/epoxy unidirectional laminates. part i: experimental studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566972/ https://www.ncbi.nlm.nih.gov/pubmed/31100829 http://dx.doi.org/10.3390/ma12101607 |
work_keys_str_mv | AT samborskisylwester modeiinterlaminarfractureofglassepoxyunidirectionallaminatespartiexperimentalstudies AT gliszczynskiadrian modeiinterlaminarfractureofglassepoxyunidirectionallaminatespartiexperimentalstudies AT rzeczkowskijakub modeiinterlaminarfractureofglassepoxyunidirectionallaminatespartiexperimentalstudies AT wiaceknina modeiinterlaminarfractureofglassepoxyunidirectionallaminatespartiexperimentalstudies |