Cargando…
A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
To improve the fault diagnosis performance for rotating machinery, an efficient, noise-resistant end-to-end deep learning (DL) algorithm is proposed based on the advantages of the wavelet packet transform in vibration signal processing (the capability to extract multiscale information and more spect...
Autores principales: | Ma, Shangjun, Cai, Wei, Liu, Wenkai, Shang, Zhaowei, Liu, Geng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566980/ https://www.ncbi.nlm.nih.gov/pubmed/31137616 http://dx.doi.org/10.3390/s19102381 |
Ejemplares similares
-
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
por: Cai, Yuxiang, et al.
Publicado: (2022) -
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
por: Yan, Jing, et al.
Publicado: (2021) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020) -
A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis
por: Liu, Wenkai, et al.
Publicado: (2019) -
A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks
por: Yang, Daoguang, et al.
Publicado: (2022)