Cargando…
Deep Convolutional Neural Network for Mapping Smallholder Agriculture Using High Spatial Resolution Satellite Image
In classification of satellite images acquired over smallholder agricultural landscape with complex spectral profiles of various crop types, exploring image spatial information is important. The deep convolutional neural network (CNN), originally designed for natural image recognition in the compute...
Autores principales: | Xie, Bin, Zhang, Hankui K., Xue, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567049/ https://www.ncbi.nlm.nih.gov/pubmed/31130667 http://dx.doi.org/10.3390/s19102398 |
Ejemplares similares
-
Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping
por: Persello, C., et al.
Publicado: (2019) -
Assessment of high spatial resolution satellite imagery for monitoring riparian vegetation: riverine management in the smallholding
por: Rivas-Fandiño, Paula, et al.
Publicado: (2022) -
Super-Resolution for Improving EEG Spatial Resolution using Deep Convolutional Neural Network—Feasibility Study
por: Kwon, Moonyoung, et al.
Publicado: (2019) -
DeepSF: deep convolutional neural network for mapping protein sequences to folds
por: Hou, Jie, et al.
Publicado: (2018) -
Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD
por: Li, Min, et al.
Publicado: (2020)