Cargando…
Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools
It is demonstrated that optical microscopy images of steel materials could be effectively categorized into classes on preset ferrite/pearlite-, ferrite/pearlite/bainite-, and bainite/martensite-type microstructures with image pre-processing and statistical analysis including the machine learning tec...
Autores principales: | Bulgarevich, Dmitry S., Tsukamoto, Susumu, Kasuya, Tadashi, Demura, Masahiko, Watanabe, Makoto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567074/ https://www.ncbi.nlm.nih.gov/pubmed/31231445 http://dx.doi.org/10.1080/14686996.2019.1610668 |
Ejemplares similares
-
Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures
por: Bulgarevich, Dmitry S., et al.
Publicado: (2018) -
Crystallographic characterization of steel microstructure using neutron diffraction
por: Tomota, Yo
Publicado: (2019) -
Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel
por: Gutierrez-Urrutia, Iván, et al.
Publicado: (2016) -
Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys
por: Gorsse, Stéphane, et al.
Publicado: (2017) -
Multiscale analysis of mechanical behavior of multilayer steel structures fabricated by wire and arc additive manufacturing
por: Watanabe, Ikumu, et al.
Publicado: (2020)