Cargando…
A Novel Polymeric Adsorbent Embedded with Phase Change Materials (PCMs) Microcapsules: Synthesis and Application
The heat released during the industrial gas adsorption (e.g., volatile organic compounds (VOCs)) on adsorbents (e.g., activated carbon) would lead to the risks of fire and explosion in the adsorption column. Herein, a novel highly-porous Vinylbenzyl chloride-Divinylbenzene (VBC-DVB) polymeric adsorb...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567085/ https://www.ncbi.nlm.nih.gov/pubmed/31086004 http://dx.doi.org/10.3390/nano9050736 |
Sumario: | The heat released during the industrial gas adsorption (e.g., volatile organic compounds (VOCs)) on adsorbents (e.g., activated carbon) would lead to the risks of fire and explosion in the adsorption column. Herein, a novel highly-porous Vinylbenzyl chloride-Divinylbenzene (VBC-DVB) polymeric adsorbent was synthesized with embedded microcapsules (Hypercrosslinked VBC-DVB Beads (HVPM)). These microcapsules have a polydivinylbenzene-phase change materials (DVB-PCMs) core-shell structure. Paraffin wax was used as PCM filling in the spherical capsule. This microcapsules-embedded polymeric adsorbent HVPM (Φ1.5–2.0 mm) is found to possess a high specific surface area (~665 m²/g) and micropore-dominant structure. It also has heat storage capability indicated by DSC (Differential Scanning Calorimetry) analysis (11.1 J/g heat of fusion between 35.0 and 48.2 °C) for the encapsulated paraffin wax. The lab adsorption tests proved the capabilities of HVPM in adsorbing VOCs (toluene, 0.21 g/g) and controlling the temperature inside the adsorption column during the dynamic adsorption process, in which the temperature rise was lowered by 62.5%, relatively. |
---|