Cargando…
An Unsupervised Method for Artefact Removal in EEG Signals
Objective: The activity of the brain can be recorded by means of an electroencephalogram (EEG). An EEG is a multichannel signal related to brain activity. However, EEG presents a wide variety of undesired artefacts. Removal of these artefacts is often done using blind source separation methods (BSS)...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567218/ https://www.ncbi.nlm.nih.gov/pubmed/31109062 http://dx.doi.org/10.3390/s19102302 |
Sumario: | Objective: The activity of the brain can be recorded by means of an electroencephalogram (EEG). An EEG is a multichannel signal related to brain activity. However, EEG presents a wide variety of undesired artefacts. Removal of these artefacts is often done using blind source separation methods (BSS) and mainly those based on Independent Component Analysis (ICA). ICA-based methods are well-accepted in the literature for filtering artefacts and have proved to be satisfactory in most scenarios of interest. Our goal is to develop a generic and unsupervised ICA-based algorithm for EEG artefacts removal. Approach: The proposed algorithm makes use of a new unsupervised artefact detection, ICA and a statistical criterion to automatically select the artefact related independent components (ICs) requiring no human intervention. The algorithm is evaluated using both simulated and real EEG data with artefacts (SEEG and AEEG). A comparison between the proposed unsupervised selection of ICs related to the artefact and other supervised selection is also presented. Main results: A new unsupervised ICA-based algorithm to filter artefacts, where ICs related to each artefact are automatically selected. It can be used in online applications, it preserves most of the original information among the artefacts and removes different types of artefacts. Significance: ICA-based methods for filtering artefacts prevail in the literature. The work in this article is important insofar as it addresses the problem of automatic selection of ICs in ICA-based methods. The selection is unsupervised, avoiding the manual ICs selection or a learning process involved in other methods. Our method is a generic algorithm that allows removing EEG artefacts of various types and, unlike some ICA-based algorithms, it retains most of the original information among the artefacts. Within the algorithm, the artefact detection method implemented does not require human intervention either. |
---|