Cargando…
400 °C Sensor Based on Ni/4H-SiC Schottky Diode for Reliable Temperature Monitoring in Industrial Environments
This paper presents a high-temperature probe suitable for operating in harsh industrial applications as a reliable alternative to low-lifespan conventional solutions, such as thermocouples. The temperature sensing element is a Schottky diode fabricated on 4H-SiC wafers, with Ni as the Schottky metal...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567275/ https://www.ncbi.nlm.nih.gov/pubmed/31137664 http://dx.doi.org/10.3390/s19102384 |
Sumario: | This paper presents a high-temperature probe suitable for operating in harsh industrial applications as a reliable alternative to low-lifespan conventional solutions, such as thermocouples. The temperature sensing element is a Schottky diode fabricated on 4H-SiC wafers, with Ni as the Schottky metal, which allows operation at temperatures up to 400 °C, with sensitivities over 2 mV/°C and excellent linearity (R(2) > 99.99%). The temperature probe also includes dedicated circuitry for signal acquisition and conversion to the 4 mA–20 mA industrial standard output signal. This read-out circuit can be calibrated for linear response over a tunable temperature detection range. The entire system is designed for full electrical and mechanical compatibility with existing conventional probe casings, allowing for seamless implementation in a factory’s sensor network. Such sensors are tested alongside standard thermocouples, with matching temperature monitoring results, over several months, in real working conditions (a cement factory), up to 400 °C. |
---|