Cargando…

Application of Hyperspectral Imaging to Underwater Habitat Mapping, Southern Adriatic Sea

Hyperspectral imagers enable the collection of high-resolution spectral images exploitable for the supervised classification of habitats and objects of interest (OOI). Although this is a well-established technology for the study of subaerial environments, Ecotone AS has developed an underwater hyper...

Descripción completa

Detalles Bibliográficos
Autores principales: Foglini, Federica, Grande, Valentina, Marchese, Fabio, Bracchi, Valentina A., Prampolini, Mariacristina, Angeletti, Lorenzo, Castellan, Giorgio, Chimienti, Giovanni, Hansen, Ingrid M., Gudmundsen, Magne, Meroni, Agostino N., Mercorella, Alessandra, Vertino, Agostina, Badalamenti, Fabio, Corselli, Cesare, Erdal, Ivar, Martorelli, Eleonora, Savini, Alessandra, Taviani, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567330/
https://www.ncbi.nlm.nih.gov/pubmed/31100805
http://dx.doi.org/10.3390/s19102261
Descripción
Sumario:Hyperspectral imagers enable the collection of high-resolution spectral images exploitable for the supervised classification of habitats and objects of interest (OOI). Although this is a well-established technology for the study of subaerial environments, Ecotone AS has developed an underwater hyperspectral imager (UHI) system to explore the properties of the seafloor. The aim of the project is to evaluate the potential of this instrument for mapping and monitoring benthic habitats in shallow and deep-water environments. For the first time, we tested this system at two sites in the Southern Adriatic Sea (Mediterranean Sea): the cold-water coral (CWC) habitat in the Bari Canyon and the Coralligenous habitat off Brindisi. We created a spectral library for each site, considering the different substrates and the main OOI reaching, where possible, the lower taxonomic rank. We applied the spectral angle mapper (SAM) supervised classification to map the areal extent of the Coralligenous and to recognize the major CWC habitat-formers. Despite some technical problems, the first results demonstrate the suitability of the UHI camera for habitat mapping and seabed monitoring, through the achievement of quantifiable and repeatable classifications.