Cargando…

Microcontroller Implementation of Support Vector Machine for Detecting Blood Glucose Levels Using Breath Volatile Organic Compounds

This paper presents an embedded system-based solution for sensor arrays to estimate blood glucose levels from volatile organic compounds (VOCs) in a patient’s breath. Support vector machine (SVM) was trained on a general-purpose computer using an existing SVM library. A training model, optimized to...

Descripción completa

Detalles Bibliográficos
Autores principales: Boubin, Matthew, Shrestha, Sudhir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567346/
https://www.ncbi.nlm.nih.gov/pubmed/31108929
http://dx.doi.org/10.3390/s19102283
Descripción
Sumario:This paper presents an embedded system-based solution for sensor arrays to estimate blood glucose levels from volatile organic compounds (VOCs) in a patient’s breath. Support vector machine (SVM) was trained on a general-purpose computer using an existing SVM library. A training model, optimized to achieve the most accurate results, was implemented in a microcontroller with an ATMega microprocessor. Training and testing was conducted using artificial breath that mimics known VOC footprints of high and low blood glucose levels. The embedded solution was able to correctly categorize the corresponding glucose levels of the artificial breath samples with 97.1% accuracy. The presented results make a significant contribution toward the development of a portable device for detecting blood glucose levels from a patient’s breath.