Cargando…
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks
Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which...
Autores principales: | Zhang, Sen, Yao, Yong, Hu, Jie, Zhao, Yong, Li, Shaobo, Hu, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567350/ https://www.ncbi.nlm.nih.gov/pubmed/31091802 http://dx.doi.org/10.3390/s19102229 |
Ejemplares similares
-
Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks
por: Hu, Qiwan, et al.
Publicado: (2018) -
Congestion Transition in Air Traffic Networks
por: Monechi, Bernardo, et al.
Publicado: (2015) -
Anomaly Detection of Power Plant Equipment Using Long Short-Term Memory Based Autoencoder Neural Network
por: Hu, Di, et al.
Publicado: (2020) -
Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
por: Ma, Xiaolei, et al.
Publicado: (2017) -
Forecasting short-term data center network traffic load with convolutional neural networks
por: Mozo, Alberto, et al.
Publicado: (2018)