Cargando…
Analyzing the Impact of Traffic Congestion Mitigation: From an Explainable Neural Network Learning Framework to Marginal Effect Analyses
Computational graphs (CGs) have been widely utilized in numerical analysis and deep learning to represent directed forward networks of data flows between operations. This paper aims to develop an explainable learning framework that can fully integrate three major steps of decision support: Synthesis...
Autores principales: | Sun, Jianping, Guo, Jifu, Wu, Xin, Zhu, Qian, Wu, Danting, Xian, Kai, Zhou, Xuesong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567360/ https://www.ncbi.nlm.nih.gov/pubmed/31096706 http://dx.doi.org/10.3390/s19102254 |
Ejemplares similares
-
Congestion Transition in Air Traffic Networks
por: Monechi, Bernardo, et al.
Publicado: (2015) -
High traffic congestion in right atrium
por: Mehrotra, S., et al.
Publicado: (2016) -
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks
por: Zhang, Sen, et al.
Publicado: (2019) -
Road traffic congestion: a concise guide
por: Falcocchio, John C, et al.
Publicado: (2015) -
Predictability of Road Traffic and Congestion in Urban Areas
por: Wang, Jingyuan, et al.
Publicado: (2015)