Cargando…

A Miniaturized Multiband Antenna Array for Robust Navigation in Aerial Applications

Satellite navigation is more and more important in a plethora of very different application fields, ranging from bank transactions to shipping, from autonomous driving to aerial applications, such as avionics as well as unmanned aerial vehicles (UAVs). Due to the increasing dependency on satellite n...

Descripción completa

Detalles Bibliográficos
Autores principales: Caizzone, Stefano, Buchner, Georg, Circiu, Mihaela-Simona, Cuntz, Manuel, Elmarissi, Wahid, Pérez Marcos, Emilio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567366/
https://www.ncbi.nlm.nih.gov/pubmed/31100784
http://dx.doi.org/10.3390/s19102258
Descripción
Sumario:Satellite navigation is more and more important in a plethora of very different application fields, ranging from bank transactions to shipping, from autonomous driving to aerial applications, such as avionics as well as unmanned aerial vehicles (UAVs). Due to the increasing dependency on satellite navigation, the need for robust systems able to counteract unintentional or intentional interferences is growing. When considering interference-robust designs; however, the complexity increases. Top performance is obtained through the use of multi-antenna receivers capable of performing spatial nulling in the direction of the interference signals. In particular, mobile applications (aeronautics, UAVs, automotive) have a substantial interest in robust navigation, but they also have the strongest constraints on the weight and available places for installation, with the use of bigger and heavier systems posing a substantial problem. In order to overcome this limitation, the present work shows a miniaturized five element (4+1) antenna array, which operates at the L1/E1 band (with array capability), as well as at the L5/E5 band (as a single antenna). The proposed antenna array is able to fit into a 3.5-inch footprint, i.e., is compliant with the most widespread footprints for single antennas. Moreover, it is capable of multiband operation and meets the requirements of dual-frequency multi-constellation (DFMC) systems. Thanks to its extreme miniaturization and its compliance with current airborne single antenna footprints, the presented antenna array is suitable for easy integration in future aerial platforms, while enabling robustness and enhancing interference mitigation techniques using multi-antenna processing.