Cargando…
Design and Implementation of an Integrated IoT Blockchain Platform for Sensing Data Integrity
With the rapid development of communication technologies, the Internet of Things (IoT) is getting out of its infancy, into full maturity, and tends to be developed in an explosively rapid way, with more and more data transmitted and processed. As a result, the ability to manage devices deployed worl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567376/ https://www.ncbi.nlm.nih.gov/pubmed/31091799 http://dx.doi.org/10.3390/s19102228 |
Sumario: | With the rapid development of communication technologies, the Internet of Things (IoT) is getting out of its infancy, into full maturity, and tends to be developed in an explosively rapid way, with more and more data transmitted and processed. As a result, the ability to manage devices deployed worldwide has been given more and advanced requirements in practical application performances. Most existing IoT platforms are highly centralized architectures, which suffer from various technical limitations, such as a cyber-attack and single point of failure. A new solution direction is essential to enhance data accessing, while regulating it with government mandates in privacy and security. In this paper, we propose an integrated IoT platform using blockchain technology to guarantee sensing data integrity. The aim of this platform is to afford the device owner a practical application that provides a comprehensive, immutable log and allows easy access to their devices deployed in different domains. It also provides characteristics of general IoT systems, allows for real-time monitoring, and control between the end user and device. The business logic of the application is defined by the smart contract, which contains rules and conditions. The proposed approach is backed by a proof of concept implementation in realistic IoT scenarios, utilizing Raspberry Pi devices and a permissioned network called Hyperledger Fabric. Lastly, a benchmark study using various performance metrics is made to highlight the significance of the proposed work. The analysis results indicate that the designed platform is suitable for the resource-constrained IoT architecture and is scalable to be extended in various IoT scenarios. |
---|