Cargando…
Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells
BACKGROUND: Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical transla...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567617/ https://www.ncbi.nlm.nih.gov/pubmed/31196173 http://dx.doi.org/10.1186/s13287-019-1255-4 |
_version_ | 1783427117106593792 |
---|---|
author | Ahlfors, Jan-Eric Azimi, Ashkan El-Ayoubi, Rouwayda Velumian, Alexander Vonderwalde, Ilan Boscher, Cecile Mihai, Oana Mani, Sarathi Samoilova, Marina Khazaei, Mohamad Fehlings, Michael G. Morshead, Cindi M |
author_facet | Ahlfors, Jan-Eric Azimi, Ashkan El-Ayoubi, Rouwayda Velumian, Alexander Vonderwalde, Ilan Boscher, Cecile Mihai, Oana Mani, Sarathi Samoilova, Marina Khazaei, Mohamad Fehlings, Michael G. Morshead, Cindi M |
author_sort | Ahlfors, Jan-Eric |
collection | PubMed |
description | BACKGROUND: Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical translation include the ability to reproducibly generate sufficient quantities of cells within a therapeutically relevant time window. METHODS: We performed transfection of three distinct human somatic starting populations of cells with a non-integrating synthetic plasmid expressing Musashi 1 (MSI1), Neurogenin 2 (NGN2), and Methyl-CpG-Binding Domain 2 (MBD2). The resulting directly reprogrammed neural precursor cells (drNPCs) were examined in vitro using RT-qPCR, karyotype analysis, immunohistochemistry, and FACS at early and late time post-transfection. Electrophysiology (patch clamp) was performed on drNPC-derived neurons to determine their capacity to generate action potentials. In vivo characterization was performed following transplantation of drNPCs into two animal models (Shiverer and SCID/Beige mice), and the numbers, location, and differentiation profile of the transplanted cells were examined using immunohistochemistry. RESULTS: Human somatic cells can be directly reprogrammed within two weeks to neural precursor cells (drNPCs) by transient exposure to Msi1, Ngn2, and MBD2 using non-viral constructs. The drNPCs generate all three neural cell types (astrocytes, oligodendrocytes, and neurons) and can be passaged in vitro to generate large numbers of cells within four weeks. drNPCs can respond to in vivo differentiation and migration cues as demonstrated by their migration to the olfactory bulb and contribution to neurogenesis in vivo. Differentiation profiles of transplanted cells onto the corpus callosum of myelin-deficient mice reveal the production of oligodendrocytes and astrocytes. CONCLUSIONS: Human drNPCs can be efficiently and rapidly produced from donor somatic cells and possess all the important characteristics of native neural multipotent cells including differentiation into neurons, astrocytes, and oligodendrocytes, and in vivo neurogenesis and myelination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1255-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6567617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65676172019-06-27 Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells Ahlfors, Jan-Eric Azimi, Ashkan El-Ayoubi, Rouwayda Velumian, Alexander Vonderwalde, Ilan Boscher, Cecile Mihai, Oana Mani, Sarathi Samoilova, Marina Khazaei, Mohamad Fehlings, Michael G. Morshead, Cindi M Stem Cell Res Ther Research BACKGROUND: Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical translation include the ability to reproducibly generate sufficient quantities of cells within a therapeutically relevant time window. METHODS: We performed transfection of three distinct human somatic starting populations of cells with a non-integrating synthetic plasmid expressing Musashi 1 (MSI1), Neurogenin 2 (NGN2), and Methyl-CpG-Binding Domain 2 (MBD2). The resulting directly reprogrammed neural precursor cells (drNPCs) were examined in vitro using RT-qPCR, karyotype analysis, immunohistochemistry, and FACS at early and late time post-transfection. Electrophysiology (patch clamp) was performed on drNPC-derived neurons to determine their capacity to generate action potentials. In vivo characterization was performed following transplantation of drNPCs into two animal models (Shiverer and SCID/Beige mice), and the numbers, location, and differentiation profile of the transplanted cells were examined using immunohistochemistry. RESULTS: Human somatic cells can be directly reprogrammed within two weeks to neural precursor cells (drNPCs) by transient exposure to Msi1, Ngn2, and MBD2 using non-viral constructs. The drNPCs generate all three neural cell types (astrocytes, oligodendrocytes, and neurons) and can be passaged in vitro to generate large numbers of cells within four weeks. drNPCs can respond to in vivo differentiation and migration cues as demonstrated by their migration to the olfactory bulb and contribution to neurogenesis in vivo. Differentiation profiles of transplanted cells onto the corpus callosum of myelin-deficient mice reveal the production of oligodendrocytes and astrocytes. CONCLUSIONS: Human drNPCs can be efficiently and rapidly produced from donor somatic cells and possess all the important characteristics of native neural multipotent cells including differentiation into neurons, astrocytes, and oligodendrocytes, and in vivo neurogenesis and myelination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1255-4) contains supplementary material, which is available to authorized users. BioMed Central 2019-06-13 /pmc/articles/PMC6567617/ /pubmed/31196173 http://dx.doi.org/10.1186/s13287-019-1255-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Ahlfors, Jan-Eric Azimi, Ashkan El-Ayoubi, Rouwayda Velumian, Alexander Vonderwalde, Ilan Boscher, Cecile Mihai, Oana Mani, Sarathi Samoilova, Marina Khazaei, Mohamad Fehlings, Michael G. Morshead, Cindi M Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells |
title | Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells |
title_full | Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells |
title_fullStr | Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells |
title_full_unstemmed | Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells |
title_short | Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells |
title_sort | examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567617/ https://www.ncbi.nlm.nih.gov/pubmed/31196173 http://dx.doi.org/10.1186/s13287-019-1255-4 |
work_keys_str_mv | AT ahlforsjaneric examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT azimiashkan examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT elayoubirouwayda examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT velumianalexander examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT vonderwaldeilan examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT boschercecile examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT mihaioana examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT manisarathi examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT samoilovamarina examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT khazaeimohamad examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT fehlingsmichaelg examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells AT morsheadcindim examiningthefundamentalbiologyofanovelpopulationofdirectlyreprogrammedhumanneuralprecursorcells |