Cargando…
An artificial neural network model for prediction of hypoxemia during sedation for gastrointestinal endoscopy
OBJECTIVE: This study was designed to assess clinical predictors of hypoxemia and develop an artificial neural network (ANN) model for prediction of hypoxemia during sedation for gastrointestinal endoscopy examination. METHODS: A total of 220 patients were enrolled in this prospective observational...
Autores principales: | Geng, Wujun, Tang, Hongli, Sharma, Apurb, Zhao, Yizhou, Yan, Ye, Hong, Wandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567776/ https://www.ncbi.nlm.nih.gov/pubmed/30913936 http://dx.doi.org/10.1177/0300060519834459 |
Ejemplares similares
-
A prediction model for hypoxemia during routine sedation for gastrointestinal endoscopy
por: Geng, Wujun, et al.
Publicado: (2018) -
Ketamine Sedation in Gastrointestinal Endoscopy in Children
por: Eskander, Ayman E., et al.
Publicado: (2016) -
Assessment of the Berlin Questionnaire for evaluation of hypoxemia risk in subjects undergoing deep sedation for screening gastrointestinal endoscopy
por: Liou, Shiue-Chin, et al.
Publicado: (2018) -
Predictive value of NoSAS questionnaire combined with the modified Mallampati grade for hypoxemia during routine sedation for gastrointestinal endoscopy
por: Li, Nana, et al.
Publicado: (2023) -
Sedation Regimens for Gastrointestinal Endoscopy
por: Moon, Sung-Hoon
Publicado: (2014)