Cargando…

The Effects of NMDA Receptor Blockade on Sensory-Evoked Responses in Superficial Layers of the Rat Barrel Cortex

Transmission of excitation from L4 to L2/3 is a part of a canonical circuit of cortical sensory signal processing. While synapses from L4 to L2/3 are mediated by both AMPA and NMDA glutamate receptors, previous studies suggested that sensory-evoked excitation of neurons in supragranular layers is al...

Descripción completa

Detalles Bibliográficos
Autores principales: Lebedeva, Julia, Zakharov, Andrey, Burkhanova, Gulshat, Chernova, Kseniya, Khazipov, Roustem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567857/
https://www.ncbi.nlm.nih.gov/pubmed/31231195
http://dx.doi.org/10.3389/fncel.2019.00259
Descripción
Sumario:Transmission of excitation from L4 to L2/3 is a part of a canonical circuit of cortical sensory signal processing. While synapses from L4 to L2/3 are mediated by both AMPA and NMDA glutamate receptors, previous studies suggested that sensory-evoked excitation of neurons in supragranular layers is almost entirely mediated by NMDA receptors. Here, we readdressed this question using extracellular recordings of sensory-evoked potentials (SEPs) and multiple unit activity (MUA) in the rat barrel cortex. We found that blockade of NMDA receptors using the selective antagonist dAPV profoundly inhibited the late part of L2/3 SEP, the associated sink, and MUA response but did not affect its initial part. Our results indicate that both non-NMDA and NMDA receptors are involved in sensory signal transmission from L4 to L2/3. While non-NMDA receptors mediate fast transmission of sensory signals, NMDA-Rs are importantly involved in the generation of the late phase of the sensory-evoked response in supragranular layers.