Cargando…

Influence of Electrical Traps on the Current Density Degradation of Inverted Perovskite Solar Cells

Premature aging of perovskite solar cells (PSC) is one of the biggest challenges for its commercialization. Particularly, PSCs exhibit rapid degradation of photovoltaic parameters under ambient air exposure. To estimate the degradation mechanism of PSC under air exposure, we systematically analyzed...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hyunho, Lee, Changhee, Song, Hyung-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567867/
https://www.ncbi.nlm.nih.gov/pubmed/31137552
http://dx.doi.org/10.3390/ma12101644
Descripción
Sumario:Premature aging of perovskite solar cells (PSC) is one of the biggest challenges for its commercialization. Particularly, PSCs exhibit rapid degradation of photovoltaic parameters under ambient air exposure. To estimate the degradation mechanism of PSC under air exposure, we systematically analyzed the relationship between electrical traps of the PSC and its degradation. After 240 h of air exposure to the PSC, its power conversion efficiency degraded to 80% compared to its initial value. The loss mainly originated from reduced current density, which is affected by traps and carrier transport in the disordered semiconducting layer. Capacitance–voltage plots of the PSC showed that the ionic doping from the perovskite layer caused an increased number of trap sites at the buffer layer. Moreover, the extrapolation of temperature dependent open circuit voltage graphs indicated that the trap sites lead to poor carrier transport by increasing recombination losses in the aged device. Therefore, trap sites arose from the result of ion migration and caused an early degradation of PSC under air exposure.