Cargando…
Overexpression of the Ubiquitin-Specific Peptidase 9 X-Linked (USP9X) Gene is Associated with Upregulation of Cyclin D1 (CCND1) and Downregulation of Cyclin-Dependent Inhibitor Kinase 1A (CDKN1A) in Breast Cancer Tissue and Cell Lines
BACKGROUND: The role of the ubiquitin-specific peptidase 9 X-linked (USP9X) gene in breast cancer remains poorly understood. This study aimed to investigate the role of USP9X in breast cancer tissue and cell lines. MATERIAL/METHODS: Immunohistochemistry was used to examine the expression levels of U...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568031/ https://www.ncbi.nlm.nih.gov/pubmed/31169265 http://dx.doi.org/10.12659/MSM.914742 |
Sumario: | BACKGROUND: The role of the ubiquitin-specific peptidase 9 X-linked (USP9X) gene in breast cancer remains poorly understood. This study aimed to investigate the role of USP9X in breast cancer tissue and cell lines. MATERIAL/METHODS: Immunohistochemistry was used to examine the expression levels of USP9X in 102 breast cancer tissue samples and 41 normal breast tissue samples. Overexpression of USP9X in MCF-7 and MDA-MB-231 breast cancer cell lines were studied by USP9X lentivirus vector transfection. Clustered regularly interspaced short palindromic repeats (CRISPR)/caspase-9 USP9X gene knockout was performed. Cell proliferation, growth, and survival were examined using the cell counting kit-8 (CCK-8) assay, the colony formation assay, flow cytometry assays, and a tumor xenograft study. RESULTS: Immunohistochemistry showed that USP9X was significantly overexpressed in 93 of 102 (91.1%) breast cancer tissue samples compared with 41 normal breast tissue samples and was associated with tumor size ≥5.0 cm (P<0.05). USP9X overexpression in MCF-7 and MDA-MB-231 breast cancer increased cell proliferation and survival, significantly reduced the number of cells in the G1-phase cells and increased the number of cells in the S-phase cells, which were reversed by CRISPR/caspase-9 USP9X gene knockout. Overexpression of USP9X upregulated the CCND1 gene encoding cyclin D1 and downregulated cyclin-dependent inhibitor kinase 1A (CDKN1A) gene in breast cancer cells, which were reversed by USP9X knockout. CONCLUSIONS: Overexpression of USP9X was associated with upregulation of the CCND1 gene and downregulation of the CDKN1A gene in breast cancer tissue and cell lines. |
---|