Cargando…
Deep Learning-Based Proarrhythmia Analysis Using Field Potentials Recorded From Human Pluripotent Stem Cells Derived Cardiomyocytes
An early characterization of drug-induced cardiotoxicity may be possible by combining comprehensive in vitro proarrhythmia assay and deep learning techniques. We aimed to develop a method to automatically detect irregular beating rhythm of field potentials recorded from human pluripotent stem cells...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570462/ http://dx.doi.org/10.1109/JTEHM.2019.2907945 |
Ejemplares similares
-
Effect of hydroxychloroquine on proarrhythmia risk assessment using human iPSC-derived cardiomyocytes
por: Yanagida, Shota, et al.
Publicado: (2021) -
Aging Model for Analyzing Drug-Induced Proarrhythmia Risks Using Cardiomyocytes Differentiated from Progeria-Patient-Derived Induced Pluripotent Stem Cells
por: Daily, Neil, et al.
Publicado: (2023) -
On-chip spatiotemporal electrophysiological analysis of human stem cell derived cardiomyocytes enables quantitative assessment of proarrhythmia in drug development
por: Asahi, Yumiko, et al.
Publicado: (2018) -
Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers
por: Li, Junjun, et al.
Publicado: (2016) -
Simultaneous recordings of action potentials and calcium transients from human induced pluripotent stem cell derived cardiomyocytes
por: Prajapati, Chandra, et al.
Publicado: (2018)