Cargando…

Multiferroicity in atomic van der Waals heterostructures

Materials that are simultaneously ferromagnetic and ferroelectric – multiferroics – promise the control of disparate ferroic orders, leading to technological advances in microwave magnetoelectric applications and next generation of spintronics. Single-phase multiferroics are challenged by the opposi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Cheng, Kim, Eun Mi, Wang, Yuan, Lee, Geunsik, Zhang, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570651/
https://www.ncbi.nlm.nih.gov/pubmed/31201316
http://dx.doi.org/10.1038/s41467-019-10693-0
_version_ 1783427271296548864
author Gong, Cheng
Kim, Eun Mi
Wang, Yuan
Lee, Geunsik
Zhang, Xiang
author_facet Gong, Cheng
Kim, Eun Mi
Wang, Yuan
Lee, Geunsik
Zhang, Xiang
author_sort Gong, Cheng
collection PubMed
description Materials that are simultaneously ferromagnetic and ferroelectric – multiferroics – promise the control of disparate ferroic orders, leading to technological advances in microwave magnetoelectric applications and next generation of spintronics. Single-phase multiferroics are challenged by the opposite d-orbital occupations imposed by the two ferroics, and heterogeneous nanocomposite multiferroics demand ingredients’ structural compatibility with the resultant multiferroicity exclusively at inter-materials boundaries. Here we propose the two-dimensional heterostructure multiferroics by stacking up atomic layers of ferromagnetic Cr(2)Ge(2)Te(6) and ferroelectric In(2)Se(3), thereby leading to all-atomic multiferroicity. Through first-principles density functional theory calculations, we find as In(2)Se(3) reverses its polarization, the magnetism of Cr(2)Ge(2)Te(6) is switched, and correspondingly In(2)Se(3) becomes a switchable magnetic semiconductor due to proximity effect. This unprecedented multiferroic duality (i.e., switchable ferromagnet and switchable magnetic semiconductor) enables both layers for logic applications. Van der Waals heterostructure multiferroics open the door for exploring the low-dimensional magnetoelectric physics and spintronic applications based on artificial superlattices.
format Online
Article
Text
id pubmed-6570651
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65706512019-06-24 Multiferroicity in atomic van der Waals heterostructures Gong, Cheng Kim, Eun Mi Wang, Yuan Lee, Geunsik Zhang, Xiang Nat Commun Article Materials that are simultaneously ferromagnetic and ferroelectric – multiferroics – promise the control of disparate ferroic orders, leading to technological advances in microwave magnetoelectric applications and next generation of spintronics. Single-phase multiferroics are challenged by the opposite d-orbital occupations imposed by the two ferroics, and heterogeneous nanocomposite multiferroics demand ingredients’ structural compatibility with the resultant multiferroicity exclusively at inter-materials boundaries. Here we propose the two-dimensional heterostructure multiferroics by stacking up atomic layers of ferromagnetic Cr(2)Ge(2)Te(6) and ferroelectric In(2)Se(3), thereby leading to all-atomic multiferroicity. Through first-principles density functional theory calculations, we find as In(2)Se(3) reverses its polarization, the magnetism of Cr(2)Ge(2)Te(6) is switched, and correspondingly In(2)Se(3) becomes a switchable magnetic semiconductor due to proximity effect. This unprecedented multiferroic duality (i.e., switchable ferromagnet and switchable magnetic semiconductor) enables both layers for logic applications. Van der Waals heterostructure multiferroics open the door for exploring the low-dimensional magnetoelectric physics and spintronic applications based on artificial superlattices. Nature Publishing Group UK 2019-06-14 /pmc/articles/PMC6570651/ /pubmed/31201316 http://dx.doi.org/10.1038/s41467-019-10693-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gong, Cheng
Kim, Eun Mi
Wang, Yuan
Lee, Geunsik
Zhang, Xiang
Multiferroicity in atomic van der Waals heterostructures
title Multiferroicity in atomic van der Waals heterostructures
title_full Multiferroicity in atomic van der Waals heterostructures
title_fullStr Multiferroicity in atomic van der Waals heterostructures
title_full_unstemmed Multiferroicity in atomic van der Waals heterostructures
title_short Multiferroicity in atomic van der Waals heterostructures
title_sort multiferroicity in atomic van der waals heterostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570651/
https://www.ncbi.nlm.nih.gov/pubmed/31201316
http://dx.doi.org/10.1038/s41467-019-10693-0
work_keys_str_mv AT gongcheng multiferroicityinatomicvanderwaalsheterostructures
AT kimeunmi multiferroicityinatomicvanderwaalsheterostructures
AT wangyuan multiferroicityinatomicvanderwaalsheterostructures
AT leegeunsik multiferroicityinatomicvanderwaalsheterostructures
AT zhangxiang multiferroicityinatomicvanderwaalsheterostructures