Cargando…
Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy
PURPOSE: Colorectal cancer is the third most common cancer worldwide, and early therapeutic treatment of precancerous tissue during colonoscopy is crucial for better prognosis and can be curative. Navigation within the colon and comprehensive inspection of the endoluminal tissue are key to successfu...
Autores principales: | Rau, Anita, Edwards, P. J. Eddie, Ahmad, Omer F., Riordan, Paul, Janatka, Mirek, Lovat, Laurence B., Stoyanov, Danail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570710/ https://www.ncbi.nlm.nih.gov/pubmed/30989505 http://dx.doi.org/10.1007/s11548-019-01962-w |
Ejemplares similares
-
Deep learning-based anatomical site classification for upper gastrointestinal endoscopy
por: He, Qi, et al.
Publicado: (2020) -
Cystoscopic depth estimation using gated adversarial domain adaptation
por: Somers, Peter, et al.
Publicado: (2023) -
Intrapapillary capillary loop classification in magnification endoscopy: open dataset and baseline methodology
por: García-Peraza-Herrera, Luis C., et al.
Publicado: (2020) -
Supporting laparoscopic general surgery training with digital technology: The United Kingdom and Ireland paradigm
por: Humm, Gemma, et al.
Publicado: (2021) -
Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures
por: Neary-Zajiczek, Lydia, et al.
Publicado: (2021)